by Shane L. Larson
Black holes emit no light, by definition. For many years, the only hope astronomers had of detecting these enigmatic objects was to look for how they interact with other astrophysical objects, like stars and gas. Astronomers have been around the block a few times — they’ve studied a lot of stars, and seen a lot of gas in the Cosmos. What should they be looking for that would clue them in when the stuff they can see has drifted near a black hole? What do black holes do to things that fall under the influence of their gravity?
If you’ve ever heard about or read about black holes, you’ve learned that their gravity can be strong — extremely strong. This leads to a somewhat deceptive notion that black holes are like little Hoovers, running all over the Universe sucking things up. The reality is that a black hole’s gravity is strong and can have a profound effect on the Cosmos around it, but only up close.
To get a handle on this, it is useful to go back to the way we first started thinking about gravity — in terms of a field. In the field picture, the strength of gravity — what you feel — is given by the density of field lines in your vicinity; gravity is stronger when you are surrounded by more field lines. There are two ways to increase the strength of the gravitational field.
The easiest way to make gravity stronger is to have more mass. Mass is the source of gravity; when we were drawing gravitational fields, the number of field lines we drew depended on the mass of the object. The Sun is much more massive than the Earth, so we draw many more field lines to represent its gravitational field.

Two observers (Stick Picard, top; Stick Spock, bottom) are the same distance from objects. For the person near the smaller object, they feel weaker gravity (evidenced by fewer field lines around them).
Another way to increase the strength of gravity is to make an object more compact. You can see this by considering two stars of equal mass, but one smaller than the other. How do their gravitational fields compare? Far from either star, the gravitational fields look identical. There is no way to distinguish between the two based on simple experiments, like measuring orbits. But suppose you were down near the surface of each star. Here we notice something interesting. Both stars have the same number of field lines, because they have the same mass. But down near the surface of the smaller, more compact star the lines are much closer together. This was the signature of gravity being stronger.

Imagine two stars with exactly the same mass, but one is larger in size (top) than the other (bottom). Observers far from either star (Stick Spock, both panels) feel the same gravity if they are the same distance away. For close-in observers (Stick Geordi, both panels) the gravity is stronger. But for the compact star (bottom) the observer can get closer, and when they do, they feel even stronger gravitational forces. The gravity is much stronger near a compact object.
The field picture of gravity is associated with the idea of forces (it is a “force field”), which is the foundation of Newton’s approach to gravity. But one of the requirements of general relativity when it was developed was that it correctly describe situations where we would normally use Newtonian gravity, as well as any situation that required relativistic thinking. We’ve seen in these examples that gravity gets stronger if an object is more massive, or if it is more compact. In the language of general relativity, we would say “there is stronger curvature” in both these cases. Remember our mantra: “mass tells spacetime how to curve.” Spacetime is told to curve more where the masses are bigger, or when the mass is very compact.
So what does this tell us about black holes? It says that to make an object whose gravity is so strong that the escape speed is the speed of light, I can do one of two things: I can dramatically increase the mass, or I can make the object more compact. This is the first clue we have to where black holes might come from — they have to be either very massive, or extremely small. We actually encounter both in the Cosmos, as we shall see, but for the moment let’s focus on the small ones. So how do you make things extremely small?

Wrap a balloon in aluminum foil. The foil is like the stuff of the star; the balloon is an outward force, keeping the star from collapsing.
Let’s do an experiment to think about this. Go find a balloon and some aluminum foil. Blow the balloon up (it doesn’t have to be huge) and wrap it in aluminum foil. This is a mental model of a star at any given moment in its life. Gravity is always trying to pull everything toward the center. But the star is not collapsing — why not? Deep in the cores of stars, the temperature and pressure is so high that nuclear fusion occurs — through a series of interactions with all the nuclei that are packed together, hydrogen is “burned” into helium. This process releases energy — it’s nuclear fusion power! In your balloon and foil model, the foil is stuff in the star — all the churning roiling gas and plasma that make up the body of a star. What is keeping it from collapsing? In this case it is the balloon, pushing the foil outward — the balloon is acting like the fusion energy bursting out from the core, supporting the star and keeping gravity from collapsing it.

Gravity (turquoise arrows) is constantly trying to pull the star inward on itself. The pressure from the nuclear fusion generating energy in the core presses outward (yellow arrows) preventing the star from collapsing.
As a star ages, the fusion process in its core evolves, slowly burning the core fuels into heavier and heavier elements, until a large core of iron builds up. There are no effective nuclear reactions that can sustain the burning of iron into heavier elements. The iron is effectively ash (that’s what astronomers call it!) and it settles down into the core. The iron is not burning, so there is no fusion energy pushing outward against gravity’s desire to collapse the core — what’s stopping it?
In addition to the iron nuclei, the core is also full of the other constituents that make up atoms, electrons. Electrons are a particular kind of particle we encounter in the Cosmos called a fermion. Fermion’s are okay to hang out together, provided they all think they are different from one another (in the language of the physicists — the fermions all have to have different “quantum numbers”); this is a well known physical effect known as the Pauli Exclusion Principle. If you do pack fermions together they dislike it immensely. They start to think they are all looking the same, and they press back; this is called “degeneracy pressure”, and it is what keeps gravity from being able to crush the iron core of the star.

When gravity overcomes the electron degeneracy pressure in the iron core (pop the balloon), there is nothing pushing outward against gravity, so the core can collapse.
High above, the star continues to burn, raining more and more iron ash down on the core. The mass of the core grows, and the gravity grows with it. When enough iron amasses in the core, the gravity will grow so strong not even the degeneracy pressure of the electrons can oppose it. When that happens, gravity suddenly finds that there is nothing preventing it from pulling everything down, and the iron core collapses. In your model, this is equivalent to popping your balloon — you’re left with a lot of material that is not being supported at all, so it collapses. Collapse the foil shell in your hands — you are playing the role of gravity, crushing the material of the star down into a smaller and smaller space.
When the collapse occurs, the iron nuclei are the victims. The compression of the iron core squeezes down on the iron nuclei, disintegrating them into their constituent protons and neutrons. The extreme pressure forces protons and electrons to combine to become more neutrons (a process creatively called “neutronization”). In less than a quarter of a second, the collapse squeezes the core down to the size of a small city and converts more than a solar mass worth of atoms into neutrons. We call this skeleton a neutron star.
Gravity wants to compress all the matter, to pull down as close together as it can get. The explosion helps gravity move toward its goal by applying astronomical pressures from the outside, squeezing and squeezing the matter down. What stops it?

You hands act like gravity to crush the foil into a small remnant of its former self. There is a minimum crushing size, because the foil presses back against your efforts.
Let’s go back to your model. The balloon has been popped — that’s gravity overcoming the supporting pressure of the electrons. The foil has collapsed — that is gravity pulling as hard as it can to get all the material down into the center. Now squeeze that lump of foil as hard as you can; make the smallest, most compact ball of foil you can. Odds are there is some minimum size you can make that ball of foil. What is keeping you from squeezing the foil smaller? The foil itself is getting in the way! It is pushing back against the force that is trying to crush it — you — and you are not strong enough to overcome it!
This is the case with the neutron star. When neutrons are so closely packed together, their interactions are dominated by the strong nuclear force, which is enormously repulsive at very short distances. As more and more neutrons are packed into a smaller and smaller space, they become intensely aware of one another and the pressure from the strong nuclear force grows until it is strong enough to oppose gravity once again. The collapse stops, suddenly.
The iron core is heavy (more than a solar mass) and moving fast (between 10-20% the speed of light) — it is not easy to stop so suddenly. When the center of the core stops, the outer layers of the core are unaware of what lies ahead. In the astrophysical equivalent of a chain-reaction traffic pile-up, the layers crash down on one another; the outer layers rebound outward. This rebounding crashes into the innermost layers of the star above the core, setting up a shock wave that propagates outward through the star. The wave begins to tear the star apart from the inside.
![The Western Veil Nebula (NGC 6960), just off the wing of the constellation Cygnus. Visible in amateur telescopes, it is one of the most exquisite supernova remnants in the sky. [Wikimedia Commons]](https://writescience.files.wordpress.com/2015/03/veil_nebula_-_ngc6960.jpg?w=500&h=205)
The Western Veil Nebula (NGC 6960), just off the wing of the constellation Cygnus. Visible in amateur telescopes, it is one of the most exquisite supernova remnants in the sky. [Wikimedia Commons]
Left behind, slowly settling down into a well-behaved stellar skeleton, is the neutron star. At the surface of the neutron star, the gravity is enormous — about 200 billion time stronger than the gravity at the surface of the Earth. The escape speed is 64 percent the speed of light. If you fell just 1 millimeter, you would be travelling at 61,000 meters per second (136,400 miles per hour!) when you hit the surface!
But this is still not the extreme gravity of a black hole. If a star is massive enough, the crushing force of the collapsing star and the ensuing explosion is so strong it cannot be stopped even by the protestations of the neutrons. In fact, the infalling matter crushes the matter so strongly that gravity becomes triumphant — it crushes and crushes without bound. The strength of gravity — the warp of space and time — soars. At some point the escape speed at the surface of the crushing matter reaches the speed of light — the point of no return has been reached, but the matter keeps falling right past the event horizon, continuing to fall inward under the inexorable pull of gravity. All the matter is crushed into the smallest volume you can imagine, into the singularity, at the center of the empty space we call the black hole. No force known to physics today is strong enough to overcome this event.
Different effects in astrophysical systems fight against gravity’s inexorable pull. If the gravity gets strong enough, nothing can prevent the collapse to a black hole.
The process just described is known as core-collapse and is just one way that astronomers think black holes might be made. Similar explosive events that lead to collapse include the collision of two neutron stars, the parasitic destruction of a small star by a compact companion that grows its mass large enough to collapse, and possibly even the collision of smaller black holes to make larger black holes.
So how compressed do you have to be to become a black hole? The answer for a perfect ball of matter is called “the Schwarzschild radius.” If you squeeze an object down to a ball that fits inside the Schwarzschild radius (that is, it fits inside the event horizon) then no known force can stop gravity from collapsing that object into a black hole. For the Sun, the Schwarzschild radius is about 3 kilometers — if you shrink the Sun down into a ball just 6 kilometers in diameter, the size of a small city, it will be a black hole. For the Earth, the Schwarzschild radius is about 1 centimeter — if you shrink the Earth down to the size of a marble, it will be a black hole.

What it would take to make the Sun or the Earth into a black hole. The Sun as a black hole would cover your town, but you could carry the Earth in your pocket (though this is NOT recommended).
Given a notion of how black holes form, astronomers can start probing the Universe, peering into places that should give birth to black holes. The same physical effects that we used to understand their formation can be used to understand how they interact with the Cosmos around them, giving astronomers clues about how to detect them. Next time, we’ll use this information to find out how black holes influence the Universe around them, and use that information to go black hole hunting in the Cosmos.
—————————————
This post is part of an ongoing series written for the General Relativity Centennial, celebrating 100 years of gravity (1915-2015). You can find the first post in the series, with links to the successive posts in this series here: http://wp.me/p19G0g-ru.
[9 March 2015] This is revised version of the original post. I owe many thanks to a colleague who pointed out that my original explanation of core-collapse followed very old ideas about how stars die. In this revision, I have endeavoured to present a correct but still clear picture of what is going on. Any inaccuracies that still persist are my own.