Tag Archives: STEM

#AdlerWall 06: #XPLORESTEM

by Shane L. Larson

All too often, we think of STEM as some kind of activity related to education — it is, after all, an acronym formed from “possible fields of study” in school: Science, Technology, Education, Mathematics.

But this is a great failure of imagination on our part. STEM is bigger than simply education, or careers. STEM is bigger than K-12 kids or young adults navigating college.

xplorestem

This week’s #AdlerWall segment is a hashtag that reads simply: #XPLORESTEM. While your high school guidance counselor may have used this notion to encourage you to think about certain majors in college, I’m going to use it as an aperture to an elegant truth: you do #XPLORESTEM every day, you just might not recognize it.

STEM, quite simply, is a way of life. One that we are all immersed in everyday, and one that we all appreciate and enjoy whether we realize it or not. But more importantly, STEM is something we practice every day without realizing it. It is something we were all once fantastic at (and very likely still are), but we’ve forgotten. We’ve listened to all those people who watch us through our lives say “you don’t think very clearly”, “you’re not good at math”, “science isn’t for you.” We’ve melded those soundbites with the seeds of doubt that talk to us in the quiet alone hours before the day dawns; we’ve sown and watered those seeds with inferiority gleaned from watching people around us who are seemingly unbaffled by IRS tax codes, computer operating systems, or the irrational math required to order pizza for teenagers.

I’m here to tell you it is time to burn that field of weeds you have sown.

I’m a theoretical physicist. I spend my days being baffled by really frickin’ hard stuff in astrophysics. I spend a lot of time teaching students and people just like you. I like to think I know what I’m talking about when I talk about STEM. So trust me when I say this:

We are all explorers. We are all scientists. We are all problem solvers. We are all critical thinkers. We just don’t know it.

You may think you are bad at math, you may think you are bad at science, you may think that scientific thinking is baffling, but that’s just the weeds talking. You think like a scientist every day; you practice the art of critical thinking (“scientific reasoning”) every day. You’ve just been trained to believe a lie that says you haven’t. Let’s take a walk, you and I, through some everyday things you encounter and think about in your life.

Like many of you, I’m related to a quilter. Which means I have a LOT of quilted stuff around my house. Here are some awesome examples.

Some excellent examples of quilt patterns. Quilts by Peggy Beauvais.

Some excellent examples of quilt patterns. Quilts by Peggy Beauvais.

Quilting is an artistic and crafty endeavour, to be sure, but there are well defined mathematical principles at work here, related to a topic we call “tiling” (which not surprisingly is similar to another household activity called “tiling” that is related to shower stalls and backsplashes in your kitchen). Tiling is the process of covering a space completely, without gaps. When the space is covered by the same shape over and over again, we call that “periodic tiling” or “regular tiling.”  Good examples include the gridded tread on your shoes, or a regular grid of floor tiles.

Zentangles are a a modern meditative artform that is built around completely filling a space with irregular tiles. [Zentangles by Shane L. Larson]

Zentangles are a a modern meditative artform that is built around completely filling a space with irregular tiles. [Zentangles by Shane L. Larson]

Tiling has given way to spectacular art. Part of the current trend toward meditative art has people engaged in coloring large patterns such as mandalas that symmetrically tile large spaces, or drawing Zentangles that cover a small space with a number of different patterns. Famous artists have made spectacular works of tiling, such as the colored tiling work of Marlow Moss and Piet Mondrian. MC Escher was especially well known for his talent with tessellations.

Tiling also appears in Nature — you can see it in the structure of the cells on a leaf, and in the “granulation” caused by convection on the surface of the Sun, and in the hexagonal lattice in the honeycomb of a beehive.

Two examples of tiling in Nature. (L) Granulation on the surface of the Sun [Image by NASA] (R) Honeycomb by bees [Image from Wikimedia Commons]

Two examples of tiling in Nature. (L) Granulation on the surface of the Sun [Image by NASA] (R) Honeycomb by bees [Image from Wikimedia Commons]

As I wander around my house I encounter another activity that my father taught me when I was young: woodworking. My dad mostly makes furniture (I have several pieces that I quite like that came from him and my childhood), but the form this most often takes for me is in building telescopes. At its most basic level, a lot of woodworking is about taking two pieces of wood and putting them together to make something, like a piece of art or a telescope or a piece of furniture. However, once you name a woodworking piece “chair” or “footstool” then there are some deeper requirements, namely “it should not collapse if I stand on top of it and do an arabesque!”

(L) My daughter doing ballet on a footstool my father made. There is a great deal of engineering that has to go into the woodworking of the footstool to make this possible. (R) One of my daughter’s creations from when she was perhaps 4 years old, and I was first teaching her about woodworking. There is no engineering requirement here beyond “it must stay together.” (Neither she nor I remember what this was supposed to be; it says "volcano" on it.) [Images by Shane L. Larson]

(L) My daughter doing ballet on a footstool my father made. There is a great deal of engineering that has to go into the woodworking of the footstool to make this possible. (R) One of my daughter’s creations from when she was perhaps 4 years old, and I was first teaching her about woodworking. There is no engineering requirement here beyond “it must stay together.” (Neither she nor I remember what this was supposed to be; it says “volcano” on it.) [Images by Shane L. Larson]

The Willis Tower in Chicago was enabled by a new thought in structural engineering -- tubular construction. [Image by Shane L. Larson]

The Willis Tower in Chicago was enabled by a new thought in structural engineering — tubular construction. [Image by Shane L. Larson]

This is the heart of structural engineering. I don’t do any serious design and planning when I make a footstool; I do it more or less by trial and error and appellation to past experience (“I better put a brace here, or it will be wobbly.”). The fundamental principles, however, are the same ones that go into bridge design, or keep the Willis Tower upright. Engineers and architects, to be sure, plan their buildings ahead of time. They do calculations and build models to make sure the beams are the right sizes and the braces are in the right places. But the beginning of any building or bridge or train tunnel is the same place every footstool or backyard tree fort starts — a sketch on the back of a Five Guys napkin with a little guesswork and a bit of previous experience.

I would be remiss, if I closed this oeuvre to life and STEM without mentioning the most obvious example of science hiding in your life: cooking.  Cooking is a bunch of thermodynamics and a helluva lot of chemistry.  We could spend weeks — months! — writing every day about the chemistry that goes into cooking. So let’s just focus on one small bit of culinary wonder: crisping and browning.

Imagine something simple, a little comfort food from childhood: grilled cheese sandwiches. Mmmmm. It starts with some simple bread, a few slices of cheddar nestled between, and a searing griddle. As soon as the bread hits the griddle, it sizzles and sings as heat seeps into the sandwich, beginning the slow melt of the cheese. The process of melting is a bit of thermodynamics, which describes how energy can change the state, the physical properties of matter. The outside of the bread (and probably some bits of cheese that have oozed out on the griddle) are browning under the heat. This is the beginning of pyrolysis, the conversion of organic material into charred material (like “charcoal”). But before the complete conversion of your sandwich into an inedible charcoal briquette, it attains a crispy golden brown state, crunchy and delicious. What happened there? The browning process and flavor change of food during the early stages of cooking (before burning) is called the Maillard process. It is a chemical process where amino acids (the building blocks of organic molecules in living things) and sugars (long chain molecules that are broken up by organisms to make energy) work together and combine into something new. The idea of the browning process was first described by French physician Louis-Camille Maillard in 1912, but the chemical reactions were not worked out until 1953 by John Edward Hodge, an African-American chemist working for the Department of Agriculture in Illinois.

The secret of my lasagne, is the sauce. [Image by Shane L. Larson]

The secret of my lasagne is the sauce. [Image by Shane L. Larson]

Of course, cooking is often as much an art as science. The exact blending of flavors to make something new from common ingredients is unique to every chef. My lasagne is probably quite different than your lasagne. We might both enjoy each other’s lasagne, trade some secrets and ideas, and then experiment to see if we want to tweak our individual recipes. Sometimes we decide the experiment was a success, and sometimes not.  It all depends if the result of the experiment tastes good or not!

Here’s a bit of cooking chemistry from my childhood. Do you know what doesn’t taste good? Tang mixed with hot chocolate. I know it sounds like it should be okay, but trust me. Barf.

Of course, it isn’t all over with the cooking. You and I can cook with guidance from a cookbook — that’s chemistry in the kitchen. But once you eat what we cooked, your body takes over. Without any input from your brain, your body fires up a process called “anerobic glycolosis” — how to take food molecules and quickly make energy out of them. YOU are a walking chemistry experiment, every hour of every day.

So what’s the point in #XPLORESTEM? While on the one hand the impetus is often to encourage the young generation of students to think about careers in STEM fields, because we largely associate such fields with the success of the economy, with progress and brighter tomorrows, and general competitiveness on the world stage, I think about it the way we’ve been talking about it here: the ideas and use of STEM are not just careers and equations and laboratories. The ideas and use of STEM are fundamental principles that we often use unconsciously and in our everyday lives and hobbies. I can’t go build a building bigger than the Willis Tower because I can make footstools. I can’t predict solar storms because I can make a pretty kitchen tile pattern. I can’t make a new durable metal alloy for joint replacements because I know how to mix up a great vinaigrette.

But I can understand and use the same basic ideas as the scientists and engineers who do those bigger things. I can appreciate that what we know about the Cosmos is not an unfathomable mystery, because it is rooted in action and activity you and I do every day.

Your kid may decide they really want to be a marine biologist or a mathematician or a computer engineer. You may decide to go back to school (now that your kids are out of college) and study astronomy, or physical chemistry, or geology.

When any of those things happen, don’t throw up your hands! Don’t make a face like you’ve eaten a bug and declare “I hated science!” I’m sure you did, but that’s because we didn’t tell you the truth — you’re a scientist every day, and you #XPLORESTEM every day. I know you do, because I do it too.

See you out in the world! I’ll be the guy at the chili competition, quite certain that my newest experiment is totally going to win the cook-off. 🙂

—————————————-

This post is part of an ongoing series about the #AdlerWall. I encourage you to follow along with the activities, and post your adventures, questions and discoveries on social media using the hashtag #AdlerWall.  Links to the entire series are here at the first post of the #AdlerWall Series.

A Rant Among Friends

by Shane L. Larson

<rant>

When you grow up and get a job, there is inevitably a Saturday night when you are talking on the phone with your mom, or enjoying a glass of Chianti with your date, and you have to answer The Question: “So what exactly is your job?” Then you fumble around for a few minutes trying to explain actuarial tables, or managing the supply line for a 7-11, or what a Toyota service manager actually does. Most careers are not reducible to a simple, one sentence sound bite understandable to relatives or members of the opposite sex. Almost certainly every job has different parts and pieces, each of which are worthy of their own sound bite!  If you love your job, then you want it sound exciting and sexy; you want your sound bite to be a sales pitch that might convince someone else to join your profession.

What's in the Fear Closet?

What’s in the Fear Closet?

As scientists, in particular scientists who are also university professors, my colleagues and I spend a lot of brain power thinking about this last part — how do you make sure people adopt science as a profession? I’m not yet besectacled and grey; my hair hasn’t yet gone the way of Big Al Einstein’s, so maybe I don’t yet have the wisdom (cynicism?) of my more elderly colleagues.  But late at night, when the world is slumbering and my grading is done, I like to open the Fear Closet in the back of my mind. Very seldom are Mike and Sully there to greet me; instead I usually find a big elephant that we scientists like to ignore: we often suck at making our profession appealing to anyone. Furthermore, we have an idealized model of who makes a good scientist that, like an unrealisticly proportioned Barbie doll, is not a good approximation of any person (or scientist) I know. The fears in the Closet all add up to one inescapable possibility: that like the dinosaurs of yore, who never became intelligent enough to save their race from impending doom, scientists could become extinct.

I'm a bit worried about the radio astronomers...

I’m a bit worried about the radio astronomers...

Now I don’t think that is a realistic fear; there are always going to be scientists.  But the landscape of our modern civilization is such that if scientists don’t evolve, we will become relegated to the backwaters of our society, currently occupied by mimes, disco, and Elvis impersonators.

This door of the Fear Closet has been open a lot lately, because scientists have an annoying habit of thinking they know everything, which means we (the scientists) think we know how to make other people love and revere science. I’ve been staring into the Closet with this in mind, and thinking back to my high school consumer affairs class where I was taught the Very Important Lesson: customers have all the power, because they have the choice to spend their money on your product or not.  If the consumers hate your product, they won’t buy it, and your business will fold. If the way you do business becomes obsolete, you won’t have any customers, and again your business will fold. Do you still have a Blockbuster down the street from your house? How about any product from Kodak? Maybe you still watch the XFL?  No? These ventures all failed to respond to the external demands placed on them by their consumer base; they failed to evolve.

Some notable examples of failing to evolve in response to customer needs and desires. Recognize any of these?

Some notable examples of failing to evolve in response to customer needs and desires. Recognize any of these?

This must be true in science too — if people don’t like the way we present and promote and sell science, they will ignore us.  An interesting case study on this point is a very pointed article a colleague of mine linked to the other day, written by Maura Charette (an eighth grader!), reflecting on STEM (Science, Technology, Engineering and Mathematics) careers (link to article).

Ms. Charette’s essay is brilliant, and as STEM professionals we should take many of her points to heart. I don’t disagree with anything she says.  But in the interest of inciting discussion, why don’t I summarize what I took away from the article (for future reference, when examining the contents of the Fear Closet):

(0) Ms. Charette writes, “while we hear science and math careers are fun, interesting, and well-paying, the actual scientists and engineers who visit our schools seem very one-dimensional.”  Despite the ascendance of geekdom into the mainstream of popular culture, scientists still maintain a stranglehold on being the opposite of cool; we are the George MacFly’s of the geeks. Not to say that there aren’t superstars among us — the public adores Neil deGrasse Tyson and Bill Nye. People like Brian Greene and Lisa Randall are at least commonly known names in some circles.  But the vast majority of us exude the exact opposite of what we want to inspire — excitement and fun.  We are, as Ms. Charette so aptly observes, one dimensional. Now it is not possible, nor desireable, for all of us to become great public personalities. But what we must stop doing is discouraging, disdaining, and ostracizing our colleagues who are good at this. Elitism abounds in science; we place far more value (as a group) on the trappings of science — research, discovery, appearing smart — than we do on the interfaces with science — teaching, writing, communicating. Many of those who act in the interface roles are not afforded the same encouragement or respect as those who act in the “popular” roles (this is in fact, a common occurrence in all academic fields, particularly at universities).  Communicating our science to the society that funds (and tolerates) us is as noble a cause as any bench science you care to name, and as it turns out, just as important.

(1) Let’s be blunt — we don’t make science exciting. If I may be a bit bold and exhibit one of the annoying traits of adults, let me rephrase Ms. Charette’s message in my own words (a classic classroom exercise!): scientists suck. Particularly at teaching.  Not all of us; many of us are great teachers (my colleagues at Weber State University Physics come to mind).  But all too often what we teach lacks the fire, the passion, the core of what drew every one of us into the field.

How we teach adversely affects opinions about our craft. We need to consider perspectives that draw people into what we want them to know...

How we teach adversely affects opinions about our craft. We need to consider perspectives that draw people into what we want them to know…

Why did YOU get into science?  I got into science because black holes are freakin’ AWESOME (and pretty much every 9 year old on the planet agrees with me). When I lay awake at night, staring at the patterns of light on my bedroom ceiling and thinking about black holes, I don’t push tensors around in my head and think about geodesic deviation and metric functions. I think about black holes tearing stars apart; I think of black holes lying in wait at the bottom of the galactic core, waiting to suck up unsuspecting stars and gas clouds.  These are the things to talk to people about and to teach about.  The technical matters are important — no doubt about it — but what people need is that deep seated sense of wonder about the world around them that makes them lay awake at night pondering how high grasshoppers jump compared to their body length, and why the Great Lakes don’t have huge tides like the ocean, and how long it will take the Rocky Mountains to wear down into sad little nubbins like the Appalachians.  You and I stay in science for those reasons, for the wonder of it. We’ve learned the technical tools, and we use them to illuminate the world and make our understanding more remarkable and enjoyable.  But we didn’t come to science because of the technical stuff.  Teach to the passions that draw people.

(2) Scientists place an over-emphasis on good grades. One of the most disturbing things (to me) that Ms. Charette wrote is this: “to pursue and succeed in those one-dimensional jobs, you have to study very hard and get good grades in the most difficult subjects.”  As near as I can tell, someone in eighth grade is already considering giving up on science because of grades.  Getting good grades is the conventional folklore, which scientists loudly advocate, and it makes me want to puke at night worrying about how many kids we drive away from science because of it.  Does having good grades help be a good STEM professional? Of course it does, but it is no substitute for hard work and a good work ethic.  Some of the people I know with the most flawless report cards in math and science SUCK at being a STEM professional!  Why? Because they are good at doing homework, finding out the “right” answer using well known conventional thinking.  But they completely lack any creativity, imagination, intuition, or ability to make brilliant leaps of logic that are so crucial to making important advances in science.

(2.5) Just to prove you don’t need good grades to be a successful scientist, let me bare my soul to the flames of the Internet. I got a C in thermal physics as an undergraduate.  I took Calculus II twice (on purpose) because I didn’t understand it the first time; the second time I decided I wasn’t meant to understand integration by parts and moved on (and I still can’t recognize when to do it). I got a LOT of B’s (and at least one C), and only a handful of A’s in graduate physics.  After my first year of graduate school, the department head in Physics called me into his office and told me I didn’t have a future in science, and I should drop out and go do something else with my life.  To encourage me to see the world his way, he didn’t provide any summer support for me (but did for the rest of my classmates). I ignored him, of course. That summer I went out and found another job and met two of the great scientific mentors in my life (Dr. Kimberly Obbink, and Dr. Gerry Wheeler). I finished my courses, and I completed my Ph.D. without difficulty. In the years since, I like to think that I’ve been a reasonably successful scientist by most of the measures of my professional community.  I had postdocs at some of the best institutions in the world (JPL, Caltech, and Penn State); I’m a tenured professor; I have 50 some-odd publications; I’ve successfully acquired multiple federal grants to support my students and my research; I was “Professor of the Year” one year.  CLEARLY he was right; you have to have perfect grades to be a good scientist. WTF was I thinking?!

My fort!

My fort!

(3) Lastly, let’s review the title of Ms. Charette’s essay: “Is a Career in STEM Really for Me?” Really?  Have we stooped to the point where 8th graders have to be cognizant and concerned with their careers?  In 8th grade I was 13; I didn’t enter graduate school until I was 21 and I didn’t get my PhD until I was 29.  When I was 13, I wanted to be an astronaut, not a relativistic gravitational astrophysicist. When I was that age, I didn’t worry about careers yet; I was BUILDING FORTS!  If you look at my fort, it is clear that there was some STEM in there — obviously some math, as well as some attempts at engineering. 🙂  I was doing “STEMy” kinds of things (as were both my brothers — one is now a diesel mechanic, the other a crop scientist — both STEM professionals).  We know that middle school years are the years where kids lose interest in science, but making them think about STEM careers is NOT the way to keep them engaged!  Neither are marshmallows and straws.  Kids are smart, intelligent, and capable. They live in a world filled with modern marvels that are commonplace to them: smartphones, streaming digital media, microwave popcorn. We need to field science that is engaging enough to compete in that marketplace and we need to do it sooner rather than later (just ask Blockbuster and Kodak how easy it was to catch up…).

Me and Xeno.

Me and Xeno.

So what to do about all of this?  My mother taught me that one cannot simply complain about the world without offering solutions. Be a problem solver, not a trouble maker. Yes, Ma; I remember.  I’m just not sure what to do about it yet; I promise to work on this.

My therapist (Xeno) says ranting is not good for my blood pressure, so I’ll stop now.  But if you have any great ideas, by all means let me buy you a beer and a pizza so we can figure out what to do next!

</rant>