Tag Archives: Teaching

Why you SHOULD respond to student requests

by Shane L. Larson

To my colleagues in professional science:

There has been a tremendous and acerbic backlash over the last week against a current popular practice of K-12 students emailing professional scientists with a list of questions they would like the scientists to comment on. I too have received these emails, and I have to very clearly state (in case you haven’t already been in one of these debates with me) that I have an unpopular view on this issue: I vehemently reject the view that we cannot respond to these emails. It is part of our professional obligation to society to respond to these notes.

In the spirit of intellectual debate, which is the purported hallmark of our discipline, let me recount some of the many aspects of the arguments that have been swirling around.

The Scenario. Emails will sail into our inboxes from (usually) middle-school science students, that asks the scientist if they could answer a series of questions.  Here is a typical one that made its way into my inbox.

examples

These emails are often clearly part of a classroom activity assigned by a teacher. There are those of us who diligently respond to as many of these as we can; we share them among our colleagues when we can’t get to them ourselves. But many of my colleagues simply don’t see the point in engaging scientists this way; they feel like they cannot or do not have the ability to respond to these requests.  Which is where the debate begins to swirl.

(*) They can just look this up on Wikipedia!  Perhaps. But even a casual inspection of science pages on Wikipedia will reveal that it has become an increasingly difficult resource to use, particularly for non-scientists. Wikipedians have taken the viewpoint that entries on the site should contain all the information one could traditionally find in a book. Many entries, especially those related to science, have wide ranging and rambling connections from all branches of science and more often than not divert into mathematical rambling. One earnest sixth grader asked me “Can you explain what a black hole is?” I would say the Wikipedia page on black holes is decidedly NOT for a sixth grader!

(*) These are thoughtless stream of consciousness questions about topics that they just picked out of a hat. They didn’t put any thought into these.  Perhaps in some cases that is true. But it is understandable — we’re talking about middle-schoolers.  For example, almost everyone has heard of black holes, but very few know enough to ask better questions than “what are they really?” But a carefully constructed answer from you can (and will) spark deeper interest, and can (and will) provide a better foundation for the next time they have a chance to ask a scientist a question — perhaps in class, perhaps in a public lecture, perhaps as part of an organized interface activity (like Adopt A Physicist).

(*) They should learn to read and process information from online and print sources; it’s a necessary skill.  That’s right, it is and they should. But they are perhaps 12 years old, and you are saying that from the far end of a PhD in modern science. Learning to read and process information, and more importantly learning how to find reliable sources of information, is something I spend time teaching my undergraduates and my graduate students. It is not as easy as you make it sound when you speak from behind your PhD. I’m sure if you talked to their teachers, you would find that they are doing activities to practice learning the skill you so ardently insist they must learn. But when you are a K-12 student, it is hard to exercise whatever mastery you have of that skill to glean something important about the modern frontiers of science.

(*) I don’t have time to respond to all the requests I get.  Does responding to a lot of emails from students and random members of the public take time? Of course it does. Just like answering your own students. Just like answering your collaborators. Just like answering your department chair or dean. Just like doing research. Just like writing grant proposals. We all have tremendous pressure on our time; that is a fact of life and simply the state that modern science finds itself in. And the truth is that we all spend time on what we value and prioritize; if you don’t value something, then you don’t do it or you don’t spend time on it. If you do value something, you make room for it and devalue something else — it all boils down to priorities and the calculus of not being able to do everything. If you aren’t doing something because it takes too much of your time to do it, you have to be willing to say, “this isn’t important enough for me to spend my time doing. I have other things that I think are more important.”

I get a handful of these requests, but not so many that I can’t answer them; far fewer than I get from my own students, to be perfectly honest. If I do get too many, I share them among colleagues. Given that our lives as scientists are dedicated to solving the hardest problems known to our species, I find it hard to believe that someone inundated by an unanswerably large number of these requests cannot figure out a way to get responses to these students.

(*) I don’t see the pedagogical value of having students email a scientist. Students shouldn’t have answers hand fed to them.  It is NOT for you to decide what is pedagogically useful, it is for the teacher who made the assignment. They have their own learning goals and their own objectives for everything they assign their students, just like you do in your own classroom. It is NOT for you to judge what they do in their classroom any more than it is for me to judge what you do in your classroom.

You should take one of the sets of questions you get, and try to find the answers on your own. Try not to view webpages and books through the lens of your professional degrees; if you find that hard, ask your own kids or a neighbors kids to evaluate a resource you think is useful.  I think you will be surprised — while there is much good science out there for people to find, there is a lot of not so good explanations as well. The signal to noise ratio is very low; you and I have been explicitly trained to work through that.

But the most important reason for me to respond to a student inquiry is they will get something different in a response from me and you than they can get from any book. Perspective, experience, personal reflection — the human side of science, the personal side of science, an illustration of what I think is important as a scientist, the history and heroes that I think are important that aren’t always described in books.

When I answered the questions above, what did I add that couldn’t be had elsewhere?

How long does it take to produce a star? Sure, you can look up the collapse time for a molecular cloud to stars, but I also talked about the scope of the question, pointing out that one could have also thought about the previous generations of stars that made the material that is needed to create a star system like ours.

Do stars have color? I made sure in my answer that the student heard the names Annie Jump Cannon and Cecilia Payne-Gaposchkin.

Do I believe in life elsewhere? An opportunity to talk about a personal belief, and where that interfaces with research science on the topic — a chance to illustrate the all too human part of science. I also pointed at one of the finest explorations of the question I have ever seen — Peter Mulvey’s song, “Vlad, the Astrophysicist” (YouTube video here); the intersection of science and society at its finest.

In the end, I think it boils down to this: we like to make loud noises about the current state of public understanding of science, but tucking our heads down is part of the reason the world is in the state it is in. It may have been okay 40 years ago to keep your attention narrowly focused on research; but 40 years ago the Cold War and the military-industrial complex allowed science to enjoy unprecedented support in the form of funding and societal tolerance.  That is not the world today; science is regularly challenged and questioned, in society and in the halls of government, much to the detriment of our civilization and the future of our planet.

But all is not lost. There is tremendous interest on the part of students and the public about science, in large part because of the very prominent and inspiring successes of our experiments that society has invested in: LIGO, the LHC, the Hubble Space Telescope, and many, many others. A few of our august bunch are very prominent in the public eye: Brian Cox, Lisa Randall, Neil deGrasse Tyson. Before them there was Rachel Carson, Carl Sagan, and (still!) David Attenborough. They have set a fire in the minds of your neighbors and in the minds of every science teacher on the planet who are now trying to light that same fire in the minds of their students. They will do their best to light an ember, but only you and I can fan the flames. There is something unique and special about communicating directly with someone who has seen the Cosmos through the eyes of the Hale Telescope, or someone who has stood over the arm of LIGO, or watched a vista of Mars slowly unfold as Curiosity sends us a picture from over the next rise.

Out of an entire class of 7th graders, will you move and inspire all of them to a life of science? Of course not, and you don’t need to. But many of them will remember later in life that they once talked to a scientist who took time out of their schedule to respond to them.  And a few will be inspired.

In one of the many dilapidated boxes that my mother has carefully preserved is a bundle of letters I received in my childhood. One is a letter I received in 7th grade from an astronomer (physicist?) at the University of British Columbia, who took time to write a paper letter in response to an earnest inquiry from a young boy who wanted to know what it took to become an astronomer. I have another letter (undoubtedly a form letter?) from someone at NASA in 1986, assuring a worried and spiritually crushed young boy that NASA would, eventually, return to space in the wake of the Challenger disaster. These are paper responses, with stamps and envelopes and everything; not even as easy as an email.

These were scientists who made the time in their busy schedules to respond to a inquiry from a student, and in the end I think it made all the difference in the world.

A Rant Among Friends

by Shane L. Larson

<rant>

When you grow up and get a job, there is inevitably a Saturday night when you are talking on the phone with your mom, or enjoying a glass of Chianti with your date, and you have to answer The Question: “So what exactly is your job?” Then you fumble around for a few minutes trying to explain actuarial tables, or managing the supply line for a 7-11, or what a Toyota service manager actually does. Most careers are not reducible to a simple, one sentence sound bite understandable to relatives or members of the opposite sex. Almost certainly every job has different parts and pieces, each of which are worthy of their own sound bite!  If you love your job, then you want it sound exciting and sexy; you want your sound bite to be a sales pitch that might convince someone else to join your profession.

What's in the Fear Closet?

What’s in the Fear Closet?

As scientists, in particular scientists who are also university professors, my colleagues and I spend a lot of brain power thinking about this last part — how do you make sure people adopt science as a profession? I’m not yet besectacled and grey; my hair hasn’t yet gone the way of Big Al Einstein’s, so maybe I don’t yet have the wisdom (cynicism?) of my more elderly colleagues.  But late at night, when the world is slumbering and my grading is done, I like to open the Fear Closet in the back of my mind. Very seldom are Mike and Sully there to greet me; instead I usually find a big elephant that we scientists like to ignore: we often suck at making our profession appealing to anyone. Furthermore, we have an idealized model of who makes a good scientist that, like an unrealisticly proportioned Barbie doll, is not a good approximation of any person (or scientist) I know. The fears in the Closet all add up to one inescapable possibility: that like the dinosaurs of yore, who never became intelligent enough to save their race from impending doom, scientists could become extinct.

I'm a bit worried about the radio astronomers...

I’m a bit worried about the radio astronomers...

Now I don’t think that is a realistic fear; there are always going to be scientists.  But the landscape of our modern civilization is such that if scientists don’t evolve, we will become relegated to the backwaters of our society, currently occupied by mimes, disco, and Elvis impersonators.

This door of the Fear Closet has been open a lot lately, because scientists have an annoying habit of thinking they know everything, which means we (the scientists) think we know how to make other people love and revere science. I’ve been staring into the Closet with this in mind, and thinking back to my high school consumer affairs class where I was taught the Very Important Lesson: customers have all the power, because they have the choice to spend their money on your product or not.  If the consumers hate your product, they won’t buy it, and your business will fold. If the way you do business becomes obsolete, you won’t have any customers, and again your business will fold. Do you still have a Blockbuster down the street from your house? How about any product from Kodak? Maybe you still watch the XFL?  No? These ventures all failed to respond to the external demands placed on them by their consumer base; they failed to evolve.

Some notable examples of failing to evolve in response to customer needs and desires. Recognize any of these?

Some notable examples of failing to evolve in response to customer needs and desires. Recognize any of these?

This must be true in science too — if people don’t like the way we present and promote and sell science, they will ignore us.  An interesting case study on this point is a very pointed article a colleague of mine linked to the other day, written by Maura Charette (an eighth grader!), reflecting on STEM (Science, Technology, Engineering and Mathematics) careers (link to article).

Ms. Charette’s essay is brilliant, and as STEM professionals we should take many of her points to heart. I don’t disagree with anything she says.  But in the interest of inciting discussion, why don’t I summarize what I took away from the article (for future reference, when examining the contents of the Fear Closet):

(0) Ms. Charette writes, “while we hear science and math careers are fun, interesting, and well-paying, the actual scientists and engineers who visit our schools seem very one-dimensional.”  Despite the ascendance of geekdom into the mainstream of popular culture, scientists still maintain a stranglehold on being the opposite of cool; we are the George MacFly’s of the geeks. Not to say that there aren’t superstars among us — the public adores Neil deGrasse Tyson and Bill Nye. People like Brian Greene and Lisa Randall are at least commonly known names in some circles.  But the vast majority of us exude the exact opposite of what we want to inspire — excitement and fun.  We are, as Ms. Charette so aptly observes, one dimensional. Now it is not possible, nor desireable, for all of us to become great public personalities. But what we must stop doing is discouraging, disdaining, and ostracizing our colleagues who are good at this. Elitism abounds in science; we place far more value (as a group) on the trappings of science — research, discovery, appearing smart — than we do on the interfaces with science — teaching, writing, communicating. Many of those who act in the interface roles are not afforded the same encouragement or respect as those who act in the “popular” roles (this is in fact, a common occurrence in all academic fields, particularly at universities).  Communicating our science to the society that funds (and tolerates) us is as noble a cause as any bench science you care to name, and as it turns out, just as important.

(1) Let’s be blunt — we don’t make science exciting. If I may be a bit bold and exhibit one of the annoying traits of adults, let me rephrase Ms. Charette’s message in my own words (a classic classroom exercise!): scientists suck. Particularly at teaching.  Not all of us; many of us are great teachers (my colleagues at Weber State University Physics come to mind).  But all too often what we teach lacks the fire, the passion, the core of what drew every one of us into the field.

How we teach adversely affects opinions about our craft. We need to consider perspectives that draw people into what we want them to know...

How we teach adversely affects opinions about our craft. We need to consider perspectives that draw people into what we want them to know…

Why did YOU get into science?  I got into science because black holes are freakin’ AWESOME (and pretty much every 9 year old on the planet agrees with me). When I lay awake at night, staring at the patterns of light on my bedroom ceiling and thinking about black holes, I don’t push tensors around in my head and think about geodesic deviation and metric functions. I think about black holes tearing stars apart; I think of black holes lying in wait at the bottom of the galactic core, waiting to suck up unsuspecting stars and gas clouds.  These are the things to talk to people about and to teach about.  The technical matters are important — no doubt about it — but what people need is that deep seated sense of wonder about the world around them that makes them lay awake at night pondering how high grasshoppers jump compared to their body length, and why the Great Lakes don’t have huge tides like the ocean, and how long it will take the Rocky Mountains to wear down into sad little nubbins like the Appalachians.  You and I stay in science for those reasons, for the wonder of it. We’ve learned the technical tools, and we use them to illuminate the world and make our understanding more remarkable and enjoyable.  But we didn’t come to science because of the technical stuff.  Teach to the passions that draw people.

(2) Scientists place an over-emphasis on good grades. One of the most disturbing things (to me) that Ms. Charette wrote is this: “to pursue and succeed in those one-dimensional jobs, you have to study very hard and get good grades in the most difficult subjects.”  As near as I can tell, someone in eighth grade is already considering giving up on science because of grades.  Getting good grades is the conventional folklore, which scientists loudly advocate, and it makes me want to puke at night worrying about how many kids we drive away from science because of it.  Does having good grades help be a good STEM professional? Of course it does, but it is no substitute for hard work and a good work ethic.  Some of the people I know with the most flawless report cards in math and science SUCK at being a STEM professional!  Why? Because they are good at doing homework, finding out the “right” answer using well known conventional thinking.  But they completely lack any creativity, imagination, intuition, or ability to make brilliant leaps of logic that are so crucial to making important advances in science.

(2.5) Just to prove you don’t need good grades to be a successful scientist, let me bare my soul to the flames of the Internet. I got a C in thermal physics as an undergraduate.  I took Calculus II twice (on purpose) because I didn’t understand it the first time; the second time I decided I wasn’t meant to understand integration by parts and moved on (and I still can’t recognize when to do it). I got a LOT of B’s (and at least one C), and only a handful of A’s in graduate physics.  After my first year of graduate school, the department head in Physics called me into his office and told me I didn’t have a future in science, and I should drop out and go do something else with my life.  To encourage me to see the world his way, he didn’t provide any summer support for me (but did for the rest of my classmates). I ignored him, of course. That summer I went out and found another job and met two of the great scientific mentors in my life (Dr. Kimberly Obbink, and Dr. Gerry Wheeler). I finished my courses, and I completed my Ph.D. without difficulty. In the years since, I like to think that I’ve been a reasonably successful scientist by most of the measures of my professional community.  I had postdocs at some of the best institutions in the world (JPL, Caltech, and Penn State); I’m a tenured professor; I have 50 some-odd publications; I’ve successfully acquired multiple federal grants to support my students and my research; I was “Professor of the Year” one year.  CLEARLY he was right; you have to have perfect grades to be a good scientist. WTF was I thinking?!

My fort!

My fort!

(3) Lastly, let’s review the title of Ms. Charette’s essay: “Is a Career in STEM Really for Me?” Really?  Have we stooped to the point where 8th graders have to be cognizant and concerned with their careers?  In 8th grade I was 13; I didn’t enter graduate school until I was 21 and I didn’t get my PhD until I was 29.  When I was 13, I wanted to be an astronaut, not a relativistic gravitational astrophysicist. When I was that age, I didn’t worry about careers yet; I was BUILDING FORTS!  If you look at my fort, it is clear that there was some STEM in there — obviously some math, as well as some attempts at engineering. 🙂  I was doing “STEMy” kinds of things (as were both my brothers — one is now a diesel mechanic, the other a crop scientist — both STEM professionals).  We know that middle school years are the years where kids lose interest in science, but making them think about STEM careers is NOT the way to keep them engaged!  Neither are marshmallows and straws.  Kids are smart, intelligent, and capable. They live in a world filled with modern marvels that are commonplace to them: smartphones, streaming digital media, microwave popcorn. We need to field science that is engaging enough to compete in that marketplace and we need to do it sooner rather than later (just ask Blockbuster and Kodak how easy it was to catch up…).

Me and Xeno.

Me and Xeno.

So what to do about all of this?  My mother taught me that one cannot simply complain about the world without offering solutions. Be a problem solver, not a trouble maker. Yes, Ma; I remember.  I’m just not sure what to do about it yet; I promise to work on this.

My therapist (Xeno) says ranting is not good for my blood pressure, so I’ll stop now.  But if you have any great ideas, by all means let me buy you a beer and a pizza so we can figure out what to do next!

</rant>

The Teacher, the Law, and the Freshman

by Shane L. Larson

My mother has a theory — whatever your great passion is in the first grade, that is in all likelihood the best indicator of what you should do with your life. It’s what will make you the happiest.   For most of my years up through about fourth grade I wanted to be a scientist.  That changed to astronaut after the launch of the space shuttle Columbia in 1981.

The astronaut thing stuck for a long time, until I started college.  Growing up during the space shuttle era, I knew that to be an astronaut did not mean you had to be a pilot, because you could be a mission specialist — someone who did science on orbit.  At some point in the years leading up to college I had decided the thing that would maximize my chances of flying as a mission specialist was to be an engineer.  So the fall I went to college, my education did not start in science at all — it started in mechanical engineering.

Being an engineer was okay; we learned computer programming (in FORTRAN, unfortunately), we got to build balsa wood bridges and then crush them under a two ton load tester, and we got to peek under the hood of all kinds of devices and see how the world works when we’re not looking. I have a strong independent streak, and generally regard my destiny as my own to control. This caused a great deal of strife as a  young engineering student because I didn’t feel compelled to follow the list of courses that had been outlined for me. Unbeknownst to me, a battle was brewing over this fact.  I became suddenly aware of this near the end of my first winter quarter when the dean of engineering called me into his office.  My memory of the conversation is something like this:

  • DEAN: You are off track. You’re not taking the courses you are supposed to.
  • ME: So?
  • DEAN: You’re taking a random physics course. You can’t do that.
  • ME: Why? I want to take astronomy; I think it will be useful.
  • DEAN: The recommended courses are what is going to be useful.
  • ME: Well I’m going to take astronomy. I’ll get to those courses eventually.

In the end, I got to stay in the astronomy class, because spring quarter wasn’t too far away.  The dean did, however, make me sign a contract that said I would adhere to the recommended engineering schedule during all future quarters.

The late Dr. David Griffiths (Oregon State University, Department of Physics).

The astronomy course in question was Introductory Astronomy: Stars and Galaxies, taught by the late Dr. David Griffiths of Oregon State University (not to be confused with the other Dr. David Griffiths, at Reed College, of textbook fame).  Dr. Griffiths was one of the formative figures in my scientific youth, and is responsible for setting me on the path I am on today.  Three days after starting his astronomy course, I changed my major to physics (*).  While I gained some deep satisfaction from delivering my change of major paperwork to the College of Engineering, and even more satisfaction from tearing up the silly contract I had signed the quarter before, you must be wondering what it was that sparked such a drastic alteration in my destiny?  It was Dr. Griffiths.  And Johannes Kepler.

On the first day of astronomy class, I sat squirming in my seat, breathless with anticipation of learning about quasars, dark matter, and black holes. Dr. Griffiths strode into class, his salt-and-pepper curly black hair slightly wild and unkempt in a way that is typical for many scientists.  On that first day, he launched into a story about Johannes Kepler and the laws of planetary motion, which apply to all orbits not just to planets. This was a story I was familiar with from many long hours spent watching Cosmos (Ep. 3, “The Harmony of the Worlds”).  This wasn’t what I was exactly waiting for, but it was astronomy and so I enjoyed myself.

The story focused on Kepler’s Third Law, which tells us that the length of time a planet takes to complete an orbit is related to how big that orbit is.  This is called Kepler’s “Harmonic Law” and is usually stated as: “The square of a planet’s period (the time it takes to complete one orbit) is proportional to the cube (third power) of its semi-major axis (the radius of the orbit if it is circular).”  Mathematically, it is written as

P2 ~ a3

Kepler had deduced this result by studying careful observations of the positions of the planets made by his contemporary, Tycho Brahe.  This made perfect sense to me.  It was the way I had always been taught that science worked: you make observations, then deduce the Laws of Nature from those observations.

At this point in the story, Dr. Griffiths did something that changed my destiny forever.  He turned to us, and looking through glasses that had slipped to the end of his nose, said, “We could have figured that out even if we didn’t have any observations.”

I sat up in my chair a little straighter at this point. What?

Dr. Griffiths continued: “We can mathematically fit any data we want to — that’s what Kepler did. But whatever the fit is, it had better come from the fundamental Laws of Nature. We can derive Kepler’s Third Law from the basic rules of physics.”  Which he did.  With a deft hand, in white chalk, he completely blew my mind in just a few short lines.  That derivation is replicated below (in my own handwriting — this moment in my formative history is far too important to ever be reduced to mere typeset equations).  While it would be easy to include this just for the aficionados (and any engineers who think they may want to be physicists…), you should look closely at this.  This is the beauty of the Laws of Nature.  What makes the planets go, and why they move the way they do, was once one of the greatest mysteries of science, yet through sheer force of imagination we humans figured out how to explain it concisely enough that it can be written on a napkin and explained as a motivational exercise for students!

Derivation of Kepler’s Third Law from first principles.

This was a revelation to me.  It was the first time that I truly felt I had a glimpse into what the scientific enterprise was all about.  It was the first time that I had ever encountered the awesome power of science, and the first time I had ever been confronted by the sheer scope of what we could accomplish with our naked intellect.  But most importantly, in the span of those few minutes, as the scritch scritch of Dr. Griffiths chalk outlined the foundations of Kepler’s Third Law, I learned one of the most valuable lessons of my scientific career, which still guides me today: everything is connected, and knowing as much as possible about everything you possibly can will bear unexpected and beautiful fruit in the end.  Before that class was over, I had decided that if this is what physics was all about, then this was a profession for me.  I walked out that day and started figuring out how to change my major.

The Laws of Nature would exist whether you and I were sitting here talking about them or not.  Atoms would continue to bond together and make stuff, apples would continue to fall out of trees and to the ground, and stars would continue to burn and flood the Cosmos with light.  The fact that the Laws of Nature can be figured out is one of the great gifts of the Cosmos to its inhabitants.  We live in a world filled with predictable patterns.  Rocks that I throw up in the air always fall back to the ground. A cup of coffee on my counter always cools to the ambient temperature of the room.  The constellations rise in the east each night at dark, and slowly march across the sky westward over the course of the night.  These tantalizing patterns are clues that Nature provides us about the underlying order of things, breadcrumbs that lead us to science, the express goal of which is to understand the Laws of Nature that make all the wondrous order of the natural world.

Science is a unique creation of our species, the paramount expression of our ability to see the world around us, and imagine why it is the way it is.  The culmination of our creative ruminations are the Laws of Nature, written in the language of mathematics, another invention of our species. As we practice science today, it is a self-correcting framework.  At any given moment, it captures our imperfect understanding of what we have observed about the Cosmos. When we make new discoveries, we reexamine the Laws of Nature as we understand them, and expand our thinking to correctly explain what we have seen.   Johannes Kepler published his Harmonic Law in 1619.  It was perfectly adequate for explaining observations of the planets in the solar system.  But it was not until 1687 that Newton took that understanding and expanded it using the Universal Law of Gravitation.  I’m sure he didn’t imagine that the consequence of that simple expansion of human consciousness would be to create a scientist out of a university freshman 300 years later.

Dr. Griffiths passed away in early 2005, returned to the embrace of the Cosmos from whence we all came.  It is a great sadness to me that I never made it back to Oregon State to talk to him again after I graduated.  Teaching is an artform which requires immense amounts of patience and practice.  I think back on that day in Dr. Griffiths’ class often, deeply cognizant of the fact that that was the moment the changed my career forever.  Today, I teach my own classes, and I hope that I also occasionally stumble through moments of revelation for my students.  I don’t know what those moments might be, or when they might occur.  I just hope they happen.  But I take my cues from Dr. Griffiths: I always teach the derivation of Kepler’s Third Law, just like it was taught to me.  🙂

——————————————————————

(*) This is how I always tell this story, because that is the way I remember it in my head. However, having written it down and looking at it critically, it does seem the exact time that passed between events is not relayed accurately here. However, this is my story, and I’m sticking to it. 😉

Paper Airplanes, Forks, and the Scientific Method

by Shane L. Larson

I was in the shower this morning thinking about paper airplanes, particularly the Nakamura Lock (instructions from the Exploratorium can be found here), which I have long championed as one of the finest paper planes that can easily be folded.

Two Nakamura Locks I keep on my desk to entertain students, parents, University administrators, and other visitors.

I discovered my love for the Nakamura Lock when I was in fifth grade, when a paper plane craze swept my school, and everyone in my class (boys and girls alike) spent several months carrying shoeboxes out to the playground filled with our best airplane designs.  The Nakamura Lock is an excellent glider, staying aloft for long periods, gliding straight and true; it has won every gliding competition with my friends hands down.

I discovered the wonders of the Nakamura Lock like most kids do, by trial and error.  I had learned many designs from friends, taught them many of my own, then we threw them all about 10 zillion times. Each flight was a revelation.  If you wanted long glides, some designs were better than others.  If you wanted fancy loops or returns to you, other designs were better.  You could increase the performance by changing the wing area, or changing the camber. You could correct a left-plummeting doomsday flight by making sure the wings were identical and your folds were straight and true.

In the back of my head, I can hear my eighth grade science teacher, Mr. Jagdeo, speaking.  “You were just using the scientific method.” We’ve all been taught the scientific method.  It went something like this:  (1) Make a hypothesis (2) Test and Experiment. (3) Revise Hypothesis. (4) Draw Conclusions.  Now, I have very fond memories of Mr. Jagdeo; he was a formative figure in my scientific youth.  But I have have no loss of love for the scientific method.  It accurately captures the basic philosophy of science, but it lacks the passion and engaging mystery of how we actually do science.  Every time I hear or see someone describe the scientific method I want to scream “BORING!”, gag myself with my finger and vomit.  Let’s do it together — scientific method!

BORING!  *gag, gag* Bleerrchhh.

Yes, science is a process, yes science is the best tool we have to objectively quantify Nature.  But is also one of the quintessential expressions of the delight we glean in indulging our curiosity.  The truth of the scientific method is that science, like solving a sudoku puzzle or or painting your own imitation Jackson Pollock, is a meandering but fun game of trying to become unconfused, punctuated by moments of inspiration and elation.

When I talk to people about the scientific method, I usually use a diagram like the one below.  It more accurately reflects what I think about the process, but is still a pale effigy of what I think I actually experience every day.  Sometimes though, I wonder if we would keep more people interested in science if we taught them the process this way.

There is no well defined procedure here; no standard forms and sections of a report that must be filled out, no bibliographies and reference citations and essays about the previous experiments and implications for the outcome of your own dalliances with science.  This is much more akin to what every single one of us does every day when confronted by some conundrum in our lives.  You hear a rattle when you are driving your car.  You stop the car, you look under the hood, but don’t see anything obvious.  Maybe it only happens when you are accelerating.  You get home and have your husband stick his head under the hood while you rev the engine but to no avail; neither of you hear the rattling. You turn the air conditioning on, nothing.  You turn the 8-Track player on, nothing. So you go out driving together, and decide that you only hear the rattling when you are on bumpy roads, and the sound is coming from the back seat. An investigation turns up that your 4 year old had dropped a fork (“Where did she get a fork?”) into the door panel through the slot the window rolls into.  Observation… Confusion… Inspiration… Fiddling… Observation… A cycle of investigation that ultimately solves a problem, imparts new wisdom on you, or leads to new questions.  That is the essence of science; that is the scientific method. And you do it every day!

The reason I was thinking about this was the Nakamura Lock. I was imagining having to explain why it flies so well and it suddenly struck me that I had never asked this question before.  I have flown these planes since the fifth grade, and I constantly put new designs up against it, but I had never before bothered to try and figure out why it flies so well.  This too is part of the process of science — noticing something about the world around you, even if that something seems completely obvious and commonplace.  Isaac Asimov, who was widely regarded as one of the finest science writers of the past fifty years, is said to have remarked  “The most exciting phrase to hear in science, the one that heralds new discoveries, is not Eureka! (I found it!) but rather, ‘hmm… that’s funny…’”  An eloquent statement of something every scientist would likely agree is true.

Why was I suddenly struck with the question of why the Nakamura Lock flies so well?  I was considering having a day in my 400 person general physics class where we built paper airplanes.

You can imagine the scene of mayhem with 400 college kids throwing paper airplanes all over the place, but that is exactly what I want. People who don’t know how to fold planes would learn from someone nearby.  People who do know how fold planes would teach people nearby. The whole while, everyone would be talking about how to make planes that fly, and how to make planes fly better.  Then we throw them and the mayhem erupts!  Some glide long distances, some fly loops, some crash gracelessly to the ground.  From the mayhem of 400 experiments, we would try to understand what makes a good plane!

We know that engagement, active learning, is the most successful way for people to have a memorable and rewarding experience in science. I think a day of paper airplanes in class may do the trick, and teach them some of my philosophy of the scientific method as well.  Sure, it will be part of their training as  young scientists and engineers; but more importantly, it will be some good life-skills training.  Science, whether we know it or not, is the way we all interact with the world around us.  Because like it or not, sometimes your kids have forks (or bowls of oatmeal) you didn’t even know they had, and do weird things with them (“Hey hon?  Why isn’t the BluRay player working?”).

——————————————-

PS: The reason I’ve decided the Nakamura Lock flies so well is the shape of the wings, shown below.

A view of the Nakamura Lock from the rear, showing the shape of the wings and body. The inverted “V” shape captures the air under the plane.

Airplanes fly because the wings provide lift. Air trapped under the wings is high pressure, while air streaming over the top of the wings is low pressure (a consequence of something called the Bernoulli effect).  Just as the high pressure air in a balloon wants to get out and tries to force itself through the neck into the low pressure air, the high pressure air under the wing is trying to get to the low pressure air, but the wing is in the way so it presses up on the wing.

In the Nakamura Lock, the wings aren’t flat, they have a bend in them (we say the wings are polyhedral) making a large pocket of high pressure air, providing a lot of lift. Mr. Jagdeo, if you are out there somewhere reading this, that is my hypothesis.  Now I have to figure out a way to test it!  Guess I’ll go fold some more paper airplanes.  🙂

“hard” science

I’m confused and at least a little troubled.

My job is, on the whole, wonderful. In fact, with the exception of when I need to do some accounting, I’m willing to bet that I have one of the best careers imaginable. I get to teach science, as well as work closely with science teachers, research science learning, and just generally promote science education. On the whole, you can imagine that I really like science and teaching, and on any given day they battle for first place in my list of favorite things — with the exception of my family, my dog, and some close friends.

So, you can imagine that I enjoy reading about how we can better promote science and science education with students and the public at large. I wave the Tuesday science insert of the New York Times at my students, rave about work my colleagues are engaged in, and I make them wrestle with their own difficult problems. (Yesterday, for example, we measured a molecule with some cork dust and a ruler.) I subscribe to a variety of posts and feeds along these lines, so it was natural to be referred to this Adam Frank blog piece by NPR as well as several friends. I was intrigued by the title and what scrolled beneath:

I’ve engaged with pieces of this general argument before. It goes something like this: We lose a lot of potential science and engineering majors in their first few years of programs because science is hard, and often we do a poor job of really engaging students in authentic ways. As a result, many of these students get seduced by other fields along the way. It could be that science coursework is too hard or poorly instructed. Or, as this particular argument goes, it could be that science should be hard and we should be getting students to celebrate this. Frank puts it this way:

I let them know they are engaged in a sacred task that connects them to millennia of human effort encoded in their genes. If they can fight their way to the truth, the truth will make them free, just as it did for me …

To a large extent, I’ll cheer on the idea that science and scientific fields are hard, intensive, difficult, exhausting, and the like, as well as being rewarding and emancipating. Science does fight its way towards truth, and yes, science is hard, and it should be. After all, a scientist is trying to figure out details of nature that she can’t directly see. Nature doesn’t give us the answers straight out, but rather gives us just enough hints for us to stay hot on the trail, turning around every once in a while when it goes cold and we’ve realized we made a wrong turn. And, I prefer my neurosurgeons and rocket launchers to have some patience, persistence, and scientific pedigree. We should earn our stripes before we cut into another human being or pull at the loose ends of all the knowledge that’s been knit together already.

However, it is easy to take this too far, and I’m given pause when I read a piece like Frank’s. I deplore the argument of “science is hard” as a way to suggest that other fields are easier. If you’d like hard, try writing. If you want really hard, go into education. Physics, in contrast, is a cake walk. I don’t think this is what authors of these arguments mean to say, necessarily. It’s important, however, to make it clear that we aren’t drawing a line between some elite studies and the others. Implicitly doing so may actually be part of our problem.

But this isn’t the main issue I have with this “hard” science argument. I suppose the primary source of this little writing fit has to do with where we point our fingers when we’re making this argument. Implicitly, if we say that “science is hard and students should celebrate this,” we’re putting the burden of our scientific literacy failings on our students. We, the scientists, are further alienating students who are already scratching their heads at us — even if for the wrong reasons. We need to start pointing the finger the other direction. We need to be sure that we’re taking responsibility for our students’ attitudes towards science. No one else will.

The project, “This is what a Scientist Looks Like,” is one example of this kind of effort. It’s a small drop in the bucket, but it’s at least aiming at having scientists contribute to something to help personify and endorse their discipline as something that is human and inviting. Scientists are doing some hard things, as well as some whimsical and fun and serious and even really hard (and still harder!) things. The basic message is that “you” can be a scientist, because just look at all of the examples of those who already are — surely there’s lots of room for a lot of diverse folks, white males, black females, bike riding astrobiologists, and green haired botanists.

It strikes me, though, that projects like this one tend to emphasize the people that these scientists are, rather than the science they’re doing. This isn’t a critique, because it’s all important. But we should also be paying attention to how we’re encouraging scientific disciplines and the work that scientists do. In that “science is hard” argument, the statement generally gets made that “science is power,” or something along these lines. And, yes, this is true, in so many important ways. Yet this is what falls so very very short for me. This power argument is only motivating to those who have a sense of power already. What about those who are just striving for some kind of equality? What about holistic enlightenment? What about a voice? I think in the “science is power” statement we’re unwittingly speaking to ourselves rather than to the diverse sets of others out there. And we wonder why it’s a bunch of competitive white guys from upper-middle class families in our science classes. Because they’re smarter? No. Because they’d make better doctors? Absolutely not. Because we market science to them with statements like “science is hard”? Perhaps. We need to be careful, at least.

All I ask is that we think carefully about our promotion of science. Don’t water it down; don’t make it something less than what it is; don’t diminish its power or enlightenment or thrill of discovery. At the same time, make sure we’re touting it as more than any of these things. Science is for all. It is, like art, music, and democracy, one thing that distinguishes us as humans, for the better. Let’s make sure that we’re inviting, with wide open doors, more than just the choir of scientists already in. We not only need more scientific thinkers, we need a more diverse pool of them. We need to continue to find ways to make this scientific invitation explicitly open and welcoming to all.

Imagination, Zombies & the Trappings of Science

by Shane L. Larson

I am often asked by worried parents and struggling students what is the most important quality in a successful scientist — stunning math ability? frightening intelligence? inscrutable intuition?  I usually go with the old classic, “Imagination.”  Einstein himself famously thought the same thing, having told the Saturday Evening Post in 1929, “Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, while imagination embraces the entire world, and all there ever will be to know and understand.”

As a scientist, I find imagination is an essential tool for problem solving.  When faced with a puzzling conundrum posed by an interesting experiment, it is the imaginative side of my brain that makes connections to the stew of scientific knowledge that has been poured into my brain as part of my continuing education.  In astronomy, imagination is among the most powerful tools a scientist can use to understand the Cosmos.  Why?  Because the size and scale of the Cosmos are, for the most part, on scales that are beyond our everyday experience and challenge the limits of ordinary human comprehension.

Imagine you and I wanted to embark on a voyage of discovery.  We agree to meet next Saturday in Salt Lake City, and plan to drive to the Florida Everglades to collect the most exquisite flower we can find.  We take your 1963 Dodge Dart to insure we obey the speed limit.  The Everglades are 2570 miles away from Salt Lake City, so if we average 60 miles per hour on our journey, it will take us 86 hours to journey to that far-away place and return home to tell the tale.  The following week we decide to embark on another grand voyage of discovery, this time to bring a rock back from the Moon.  As the astronomer Fred Hoyle once noted, “Space is only an hour away, if you could drive straight up.”  And indeed it is; the boundaries of the fragile skin of air that covers the Earth, the shores of the Cosmic Ocean, are just sixty miles over our heads.  The Moon is our closest cosmic companion, but it is still much farther away.  To drive there at 60 mph (in your magic flying Dodge Dart) would take us 166 days one way.  To reach the Sun, 93 million miles away, would take 177 years.  And the stars are farther away still.

There are few places in the Cosmos that we can visit.  Our contemplations of the Cosmos are in many ways limited to what we can imagine, informed by what we can observe.  All we can do is observe the Universe around us, and then imagine how what we have seen can be explained by the laws of Nature.  The mysteries of what we see challenge the limits of what we understand, but over time more observations reveal Nature’s grand design and our knowledge grows by a small measure, expanding the legacy of our curious species.

My imagination works in other ways as well.  For instance, I suffer from a well known academic malady known as “impostor syndrome.” If you have this affliction, you imagine that you are unworthy of the job, position or status that you hold.  You have convinced yourself that you are an intellectual fraud, and that you have put on the smarmiest used-car salesman schtick imaginable to arrive at your position in life today.  The smallest piece of data reinforces the conviction of your impostor status: a colleague or department head fails to return an email, a grant proposal is rejected, on your teaching evaluations you only score 3.5/6.0 on the question “Professor remembers to wear matching socks.”  As a consequence, you try work your ass off for fear of being discovered for the fraud and joker that you are.  This makes your more frazzled and likely to be discovered, and on your next teaching evaluations you score 2.5/6.0 on the question “Professor lectured on physics not social justice in pre-revolutionary France.”

It is this destructive form of imagination that is perhaps the most interesting.  Imagine that while on our long voyage in your Dodge Dart we decide to watch movies to pass the time. Many scientists have difficulty watching movies that ignore fundamental scientific tenets, or have logic holes in the plot.  I do not suffer from these difficulties; I am perfectly happy to suspend my disbelief and watch any movie you want to watch (except “Beaches”).  Curiously, however, some movies freak me out, and others don’t.  I can totally watch zombie movies without worry and when I’m done, turn out the lights and sleep peacefully.  However if you plunk me down in front of a Wes Craven nightmare movie, then I think harder about the wisdom of turning any light in the house off, and make sure the blankets are securely tucked up around my neck to protect my jugular from any bloodthirsty beasts from the Abyss that might be invisibly roaming around my house.

What gives?  Why don’t zombies freak me out, but ghosts plunge me into a paroxysm of fear?  Because there is an ostensible “scientific” explanation for the emergence of the zombie apocalypse — typically a virus, an identifiable biological agent discovered by scientists.  In the current vogue, zombies are a consequence of something real and understandable.  But consider a movie like Dracula.  Count Dracula has crazy supernatural powers; he can fly, he casts no reflection in mirrors, he can turn into mist or into a bat.  This is crazy stuff well outside the boundaries of science — “supernatural.”  That scares the crap out of me because I can’t understand it.  In the absence of the solid foundation of science, imagination runs away on its own and degenerates into fear and superstition.

Of course, the real observation here is this: there are some damn imaginative people out there, making up all these stories about zombies and ghosts and vampires.  People with stunning imaginations.  And their audiences love these movies because they have robust and healthy imaginations that they love to set free, to wander far from the confines of everyday life.  This reveals a lovely conundrum: why is science literacy today widely regarded (by scientists, and a few economists) as one of the pre-eminent problems of our time?  If imagination is one of the most valuable tools in science, how can such vast segments of our highly imaginative society be scientifically illiterate?  Science is also a doorway to wonder, escapism and distant vistas crying to be explored.  But it doesn’t grip the world the way movies and novels do.  Why?  Perhaps it is because we have failed to imbue science with a deep connection to the core of the human psyche; perhaps it is because we’ve distilled science down into the five points of the scientific method and beakers full of polysyllabic organic compounds and mathematical formalism.  We hide behind the trappings of science, pretending to be dispassionate observers and all-knowing skeptics.  But at night, when no one is looking, we secretly listen to Bill Nye the Science Guy, and read Timothy Ferris, and watch reruns of Carl Sagan.  When we’re alone, we revisit the reasons we all became scientists in the first place: because science is full of adventures that dazzle us and tickle our imaginations into wondering what secrets Nature might hold.

If we want the world to be more science literate, we should revisit why each of us became scientists in the first place.  Scientists are born problem solvers — we should be able to imagine solutions to the problems of science literacy.  Many do, and have somehow touched that innermost part of our psychology that makes something important to beings such as we.  There are exceptional books like Craig Bohren’s “Clouds in a Glass of Beer,”  Richard Muller’s “Physics for Future Presidents” and Robert Banks’ “Towing Icebergs;” there are fantastic outreach programs, and citizen science programs like Protein Folding @Home and GalaxyZoo.  These are prominent and successful efforts, but they are not the norm and only engage the smallest fraction of our society.  As a whole, our community does not participate broadly enough in an activity which frankly we are the most qualified to do: using our imaginations to engage society in science.

Of course identifying a problem is one thing, but to imagine a solution one has to imagine what we want the world to be like on the far end.  This is the crux of the whole “science literacy” problem — we know we want more science literacy, but we don’t really have a uniformly agreed upon definition of what that means.  For the community of scientists as a whole, we recognize science literacy (or more likely, science illiteracy) when we see it.  For me, I propose the following personal goal for science literacy: I want non-scientists to enjoy indulging their curiosity about the world around them, and appreciate the fact that it is possible to figure things out.  I don’t care if people can actually do a calculation with the Universal Law of Gravitation — if you’re a dentist, I hope you can appreciate the way science works, but don’t care if you know the inner workings.  If you could compute the delta-v needed to make the transfer orbit from Earth to Mars, you’d be an astrophysicist not a dentist!

How do we encourage science literacy?  We imagine solutions!  Solutions that each of us as individual practitioners in science or education could implement, expand upon, and teach others to do.  Solutions that are simple, grass roots movements that are infectious by their simplicity and “fun factor”, which are casually introduced to the world around us and then spread like a vast plague, unleashing the science zombie in everyone.  There is only one global solution for science illiteracy: scientists must actively work outside their laboratories and classrooms to improve the understanding of science.  There is no silver bullet to save our society from the pit of ignorance.  The only solution is the sum of thousands of small solutions, built up by each one of us in our own sphere of influence — educating our neighbors, the post office employees, the night shift at Taco Bell, the city council, the president of the University.  For more than 30 years, we have bemoaned the state of science literacy in the United States.  If anything science illiteracy is getting worse as it becomes fashionable and (for some) politically correct to be science illiterate.  How can we possibly imagine that?

science as “fun”

by Adam Johnston

Over the last few weeks I’ve been asked a lot about how I got to where I am in my career, and in particular why I pursued science. I’ve taken advantage of those moments as a way to amass a variety of answers. It’s funny, though, because the question gets asked in lots of different ways. There’s “why are you a scientist?” and “how did you become a scientist?” and “what inspired you to go into science?” These are all different questions, and they all have different answers. I wish I could answer even one of them.

When I was on the radio a couple weeks ago (yes, I enjoy saying that) I was asked about the personal appeal for science. I talked about it being “fun.” Later, I tried to clarify this a bit. You could call it fun, or whimsy, or curiosity, or intrigue — any of these things and many others would do, even though none of them are adequate. It’s as adequate and satisfying as saying “love feels good”. When I said “fun” I didn’t mean it in the playing video games kind of fun. I meant fun like improvising on the piano and hiking a mountain, maybe at the same time. I meant “fun” like the part of me that feels a little more humble and a little more aware than other primates. I meant “fun” in the way you say it when you realize it isn’t adequate, but at the same time you have an awareness of the inadequacy of a word, the inadequacy of your own understanding of something that’s bigger than you, but the desire to get it right, to get it figured out.

In short, I meant “fun” in the sense that it is a part of what makes me human. It’s what inspires me and justifies to me the act of bringing science to children. They should own science like they own their own humanity. On that same radio show, the other discussant talked about science being about “power”. That bothered me at the time, and it still pricks me. Not to be antagonistic, but I think it’s completely the opposite. Yes, I know that he probably meant “power” in an intellectual way. To understand something is to feel a control and awareness of your place within nature. But even that I don’t think I really buy. I understand a little more about the space within me and without me, and I’m humbled. I’m shocked that we have capacity for this stuff, the understandings, and the consciousness of what we’re doing in science. We pick up pebbles, turn them over, one by one. None of the pebbles say anything in particular, but together, the pebbles and us and the rest of it, we make something out of it. That isn’t power; it’s sublimity.

There are plenty of moments, days, and weeks that I wander around wondering if I really am a scientist.  I think I am. Sometimes I joke that I’m a scientist because I couldn’t get a job, although I’m not always sure whether or not I’m joking. There are days I’m fairly certain that I’m a scientist because I couldn’t make it as a rock star.  Or maybe I’m not a rock star because I had the opportunity to be a scientist. That was a gift I didn’t know I’d been given until much later.

I remember wanting to be an engineer before I knew what an engineer (or a scientist) is. And then I remember a switch that flipped during a physics class taught by Herschel Snodgrass.  (Yes, that really was his name.)  He did the demo where the ball launched, aimed directly up, from a moving cart, and yet it still landed in the cart, jumping over a miniature bridge in the process.  I can’t say for sure that this was the moment exactly that I became a scientist, but it’s one that I refer to.  That demo, maybe more than anything, flipped the switch and cleared up the distinction between being a scientist and an engineer.  The engineer would be building that bridge in the demo and be satisfied with it in its stability and structure.  The scientist gets to wonder things like, “What rule determines the motion of that ball?”  “What is inertia and from where does it come?” and “Holy Jesus!?!”  And we stew in that.  

I still do that demo for most every class I teach, and I tell them about that moment and the switch, and I tell them that, even though I know exactly what’s going to happen and a little bit about why and how it connects to so many other rules, it still gets me, sticks a pin in some sensitive inside part of me that loves, is in love, with that beauty.  Not the beauty of an angel or a rainbow or a unicorn, but the simple up and down of that ball that keeps perfect pace with the cart.  How did the ball know how to do that without the ability to know anything? I still don’t know. I still see that ball, up, over, down, back in the cart… I still wonder. I’m in awe. And that, I suppose, is what I meant when I said it was “fun”.