by Shane L. Larson

By the time I went to college, I had mastered my fear of vampires enough to not have to sleep with my neck covered. Kept my kid sheets, mastered my kid fears.
When I was a kid, I was completely terrified of the dark. I would sleep at night with the blankets bunched up around my neck (to protect me from vampires) and with a bright light on all night long so if I happened to wake up, I’d see anything sneaking up on me.
Don’t get me wrong — I’m still terrified of the dark. I don’t do stupid things like walk into dark rooms without turning the light on, or watch horror movies (in case you’re wondering — 25 years is too short of a gap between viewings of The Exorcist). But as I got older, my fears evolved.
I grew up during the Cold War, and I was terrified of a nuclear holocaust — my nightmares of vampires were replaced by mushroom clouds and warheads unexpectedly raining down on Saturday morning breakfast. There was a lot of general malaise about this, but a particularly strong memory I associate with my burgeoning fear was seeing a 1985 Twilight Zone episode called “A Little Peace and Quiet“. The closing shot of that episode planted enough disturbing imagery in my head to fuel dark dreams for years to come.

The final terrifying scene in the Twilight Zone episode, “A Little Peace and Quiet.” The image of a warhead hanging over a town terrified me.
Today, I still worry about nuclear conflict (moreso lately, given the instability in the United States’ executive leadership). But other nightmares, possibly far more likely, have found purchase in the soil of my psyche. I worry about the resurgence of diseases like measles and whooping cough, the result of peoples’ resistance to vaccinations. I worry a lot about the steady and constant damage we are inflicting on Earth and its biosphere. I worry about the collapse of bee colonies and the massive bleachings of coral reefs. I worry that we see unprecedented changes in climatic patterns, atmospheric chemistry, and arctic ice that herald an uncertain terrifying future not just for humans, but for every lifeform on the planet.

There are lots of problems facing the world. (L) Rampant impact of human civilization on the environment. [Wikimedia Commons] (C) Coral bleaching, one indicator of planetary wide changes due to climate change [NOAA] (R) Viruses once held in check by herd immunity gaining footholds once again amid people disavowing vaccinations [Wikimedia Commons].
She’s right — vampires and ghosts are a figment of our imagination, but as such there are no fixed rules about how to deal with them. There are as many ways of conquering and facing the supernatural as there are fiction authors.
But virulent diseases, arms control, and climate change? There are well established ways of finding out what’s at the heart of those threats and figuring out how to combat them. You and I call that science.
Where does my faith in science come from? A long and storied history, written by you and me and 40,000 generations of people before us. Humans, more than any other lifeform we are aware of, look at the world with a critical eye and ask “what do we see happening? what does it mean? what can we learn from this?” The result of that process, pursued relentlessly in the face of superstition and the over-active darkness of our imaginations, are all the wonders of the modern world we see around us — wi-fi and pacemakers and insulated coffee mugs and teflon pans land ballpoint pens and flying drones and digital cameras.

Technology is one of the most obvious manifestations of science in our everyday lives. Simple examples include insulated coffee mugs that exploit a deep understanding of thermodynamics (L), modern pens that utilize fluid dynamics and mechanical interfaces (C), and teflon coated non-stick pans are the product of chemistry and materials science (R).
But the process of science has also resulted in knowledge and discoveries that are as poetic and stunning as the finest piece of porcelain, the most beautiful rhythm of poetry, the most exquisite painting or the most stirring symphony. Consider the lives you and I lead — we live in a world where baseballs and rosebushes abound, we walk around at the pace our feet carry us, and the most extraordinary event most of us ever experience is a thunderstorm or a kiss on a first date.
But that same world is a world where people like you and me have left footprints on the Moon. We’ve sent robots to sift the sands of Mars and photograph the far side of a remote icy world called Pluto. We’ve discovered that stars burn at millions of degrees in their hearts and when they die they explode, creating every atom in every cell of you and me. We’ve taken those atoms and broken them apart to discover they are made of smaller particles called protons, neutrons and electrons. We’ve even broken protons and neutrons apart to find they are made of even smaller particles, called quarks.

Well before science turns into ways to improve your golf game or make your life in the kitchen easier, it is simply pushing the limits of what we think is possible. [L] Buzz Aldrin’s bootprint on the Moon; the Moon is the farthest any human has ever been from Earth [NASA]. (C) The New Horizons spacecraft, after a 10 year journey, sent home the most exquisite images of Pluto ever taken. Pluto is the most distant object ever visited by spacecraft from Earth. [NASA] (R) We have the technology to manipulate and image individual atoms, a million times too small to be seen with your naked eye. [NIST]
So why do we know about the Moon and Mars and Pluto? Why do we care about atomic nuclei and quarks? Because we let our imaginations get the better of us. Unfettered, we let ourselves ask any question we want to ask, and we set out to find the answers. Every time a curious question presented itself, we rolled up our sleeves and we figured out the answer. But discovery and understanding are only the beginning. Once we have the knowledge in hand, then our innovators and engineers can figure out how to bring it into our homes and lives.
That’s how science works.
In the end, science is the most powerful tool we have to solve problems, and we can use it to solve any problem in front of us. We should be convinced of that by the fact that we can visit planets that no human has ever been to, and that we manipulate and image the very atomic building blocks that make up the world even though we cannot see them. We have the ability to use these tools for our own good. We have the choice to use these tools to overcome those dark corners of our imaginations and create a future our children will look back on and remember for all the good that we did to save ourselves from ourselves.
I have debates with my friend, a Maths Teacher, on the values of maths and how to define mathematics. I argue maths is typically a form of Art. A rampant orgy of throwing numbers and formulas about, until settling on a design which suits the occasion or the need. It never fails to wind my friend up.
I guess Science in its simplest form could also be described as numbers being processed under the auspices of a well documented bank of knowledge. In other words, layering information to get to the next amazing conclusion or development.
What comes first, the idea or the science?
Surely the atom bomb, vampires and that frightening scene from “Carrie”, are responses to desire of a kind. None of them were real once and now they resonate in our minds and daily worry, balancing the bucolic nature of our natural view on life.
Climate Change has classically entered the minds of us all. Whether we argue it’s degree of harm or good, it cannot be ignored lest we be ignorant or worse, stupid.
The existence of Climate Change has been exposed via science and ideas. Backed up by well documented information over many centuries. The interesting point here is would climate change, vampires, equations, scary movies and life on Mars; actually have come into existence were we to not have conjured the idea first?
You always make be think Shane.B