Tag Archives: LIGO

Knowing something about everything

by Shane L. Larson

During the early 1970’s, a yellow cab crawled up Park Avenue in New York City. By all accounts, this was an innocuous happenstance, repeated thousands of times a day before and since.  But this cab ride was special, because it gave rise to one of the greatest treaties in human history, the so-called “Park Avenue Treaty.” The signatories were Isaac Asimov and Arthur C. Clarke, who agreed that Asimov was required to insist that Clarke was the best science fiction writer in the world (reserving second best for himself), while Clarke was required to insist that Asimov was the best science writer in the world (reserving second best for himself).  The treaty was famously referred to by Clarke in the dedication to his novel, Report on Planet Three, which read “In accordance with the terms of the Clarke-Asimov treaty, the second-best science writer dedicates this book to the second-best science-fiction writer”.

Arthur C. Clarke (left) and Isaac Asimov (right), the signatories of the Park Avenue Treaty.

The treaty is indicative of one of lost truths of those by-gone days — Asimov was widely regarded as one of the finest communicators of science, though he is most often remembered for his science fiction (if you haven’t read the original Foundation Trilogy, stop reading this now and go find a copy; this blog post will be here when you get back).  He became a proficient and popular science writer in the years after the Soviet Union launched Sputnik, when there was widespread concern about the “science gap” between Americans and the rest of the world (an earlier incarnation of the current growing science gap in our country).  Asimov’s writings were wide ranging, accessible to broad audiences, and enormously popular. Kurt Vonnegut once famously asked Asimov how it felt to know everything.  Asimov replied that he was uneasy with his reputation for omniscience.

Despite his play at modesty, Asimov’s reputation was not ill-deserved.  He was, by all accounts, a polymath — a person whose intellect and expertise span a vast number of areas in the entire body of human knowledge. There have been many polymaths throughout history, many of their names are well known in our popular culture.  Perhaps the most famous, was Leonardo da Vinci, widely regarded as one of the finest mechanical geniuses and artists who has ever lived. Apprenticed as a young boy to the artist Verrocchio in Firenze, Leonardo was immersed and trained in artistic and technical skills of the day: drafting, metalwork, drawing, sculpting, and painting.  Leonardo’s skill manifested itself even at this early age.  Anecdotal stories tell that when he began painting under the tutelage of Verrocchio, the young Leonardo’s skill was so great that Verrocchio swore to never paint again.  In his life, Leonardo produced stunning works of art that have survived and are revered today — the Mona Lisa, The Last Supper, and the Vitruvian Man.  One of my favorites works is the first sketch that we are certain is a work of Leonardo, of the Arno Valley from 1473. It is a simple line sketch that somehow captures the effervescent beauty of that far away Italian countryside, though I have never been there.

“Study of a Tuscan Landscape.” This sketch of the Arno Valley is the oldest known work of art by Leonardo da Vinci.

In my mind’s eye, I imagine the young Leonardo sitting on a grassy hillside, his pen and paper in hand, recording the image of his home in quick lines and shades. As the shape of the Arno Valley emerged and the walls of the Castle Montelupo sprang up on the page, his mind must have wandered in the fertile ground of imagination, exploring new seeds and thoughts planted by the sun and the landscape. Leonardo was not one to let seeds go untended. His genius and creativity are well known, spawning not only some of the most famous works of art in western culture, but also straying to ideas about flight and helicopters, harnessing the Sun’s energy by concentrating it, and the possibility that the Earth’s surface moved (something geologists today call plate-tectonics). No topic was too mundane, nor of little interest to Leonardo. He was a true polymath.

It is a funny fact of human nature that we discourage the behaviour that we so often value.  Polymaths dominate the ranks of the most revered scientists of all time: Leonardo, Galileo, Newton, Huygens, Feynman, Dyson. But in academic circles, polymathism is discouraged. University professors are often encouraged to be narrow minded, to focus their attention and efforts in narrow back-waters of science so they are the world’s single expert in very rigidly defined and narrow boxes of knowledge.  Somewhat surprisingly then, the most awesome applications of human imagination to science are efforts that are highly interdisciplinary, requiring expertise from hundreds of scientists in an astonishing variety of fields.

Approximately a hour to the west of Vinci, on the outskirts of Pisa, one of the greatest miracles of the modern age is taking shape.  Astronomers and physicists, in collaboration with computer scientists and engineers and laser technologists, are constructing an enormous, multi-kilometer long laser interferometer called Virgo (http://goo.gl/maps/CYzrE).  A similar, but smaller observatory called Geo has been constructed in the farmlands outside of Hannover, Germany (http://goo.gl/maps/Ozlco).  The Japanese are constructing another facility called Karga underground at the famed Kamioka Observatory in western Japan.  Two larger observatories have also been built in the United States, called LIGO — one in the high desert of eastern Washington near the Hanford Reservation (http://goo.gl/maps/C1QEj), and one in the verdant cypress forests of Louisiana near Livingston (http://goo.gl/maps/pifQn).

These massive scientific instruments are the cousins of interferometers that have been used in physics laboratories for the past century, simply enlarged by a factor of 4000 and instrumented with state of the art lasers, seismic isolation systems, the world’s largest vacuum system, 30,000 environmental sensors and one of the most powerful linked computer networks ever created for scientific analysis.  The goal is to detect one of the holy grails of physics: gravitational waves.

Gravitational waves are a completely new way of looking at the Universe, not with light, but with gravity.  Virtually everything you know about the Cosmos — everything you’ve ever been taught, everything you’ve ever read in a textbook or seen on the news, has been discovered with light using telescopes.

The Hubble Space Telescope (left) extends our vision deep into the Cosmos, providing views like this one of the Carina Nebula (right), showing us a secret birthplace of stars.

It is a time honored tradition that has passed down to us from another great polymath, Galileo Galilei who built the first telescope in 1609 and wrote about his experiences the following year in the celebrated Sidereus Nuncius (”The Starry Messenger”).  The descendants of that first modest spyglass are simple telescopes you might use in your backyard, as well as the Hubble Space Telescope.  The telescope has taught us much about the Cosmos and our place in it.  But there are new frontiers to be explored by changing our perspective.  The detection of gravitational waves will revolutionize our understanding of compact astrophysical systems. We will be able to directly probe the interior structure of neutron stars (the densest objects known) as they tear themselves apart in titanic collisions; we will watch black holes merge and ringdown, revealing their size and spin; we will see stars plummeting in chaotic spiraling orbits around black holes that will map out the gravitational field to reveal the structure and shape of the hole.  And, if we are lucky, we may even detect the faint echoes of gravitational waves from the Big Bang, whispers across time from an era 400,000 years earlier than any ordinary telescope will ever be able to see.

It was Einstein himself who discovered the idea of gravitational waves in 1916, but he almost immediately discarded the notion of detecting them because the physical effect that has to be measured was, in his estimation, beyond our abilities. Fast-forward to the modern era, and technology has changed.  Not just a single technology, but many technologies.  The instruments we build to detect gravitational waves are a complex synthesis of ideas requiring people of broad mind and discipline.

The enormous arms of these interferometers had to be laid out by our best construction contractors, because the arms are long enough that the curvature of the Earth matters!  The 1 meter diameter vacuum pipes had to be manufactured then spiral welded without any leaks or cracks over the entire 4 kilometers of the instrument arm.  Thermal engineers had to design expansion baffles on the beamtubes that contract and expand with the heating and cooling of the arms with the rising and setting of the Sun. Seismologists and meteorologists and electrical engineers had to create a network of some 30,000 environmental sensors that monitor and report on the health and environment of the observatory.  Exquisite isolation engineers had to build suspension systems capable of filtering out vibrations from everything — people walking down the hall, the echoing tremors of ground motion on the other side of the world, and the rumble of car tires on a highway ten miles away.  Computer scientists and network engineers have designed a computing and data acquisition system that has thousands of individual links, stores and processes data, and delivers that data to a collaboration of nearly 1000 scientists spread around the world.  Master optical engineers and laser physicists have built a laser injection and control system that takes as input a single infrared laser beam, circulates it over 1600 kilometers during 400 trips up and down the vacuum beam line, and brings the laser light all back together to measure minuscule changes in distances that herald the arrival of gravitational wave signals from remote corners of the Cosmos.

LIGO is an awesome machine, whether you are looking down one of the 4 km arms (left), or staring into the guts of the computer system interlinking the instrument and all of its vast sensor network (right).

Standing at the vertex of one of these great instruments, staring down the arm to the distant end stations 4 kilometers away, it is easy to be amazed by the ingenuity of our scientists and engineers — large teams who have butted heads, argued, designed, tested, and ultimately built the most sensitive scientific instruments our species has ever created.  A pool of talented people who had the where-with-all to imagine every possible problem that might be encountered along the way and design a solution.  Talented people who encountered unforeseen problems, ferreted out the cause of the trouble, then built a solution that allowed us to continue down the long road toward discovery.  These great machines, and ultimately the discoveries we make with them, are a testament to their dedication and perseverance, a legacy as great as that of Newton, and Huygens, and Leonardo.  We polymathed our way to these instruments, not through the intellect of a single person, but through the linked abilities of a vast team of people spanning multiple decades of work.  As a result of those efforts, we find ourselves poised on the brink of discovery: breathless with anticipation, and rightfully proud of our accomplishment.

The LIGO-Hanford interferometer, seen from the air.

Standing at the vertex of LIGO, one can’t help but be overwhelmed by two things. The first is the awe-inspiring example of what we can engineer through sheer ingenuity and perseverance. Instruments like LIGO will fundamentally change the way we view the Cosmos, pushing us to look beyond the simple prejudices imposed by the limitations of our physical senses and listen to the grandeur of a Universal symphony we’ve never been able to hear before. The second is that this machine is only the beginning of so much more than just astrophysics. New technology and new insights always flow back to society and are used in startling and unexpected ways, propelling our young species forward. This was true with Apollo, and as many others have pointed out, is true for LIGO.  The LIGO laser technology is already making its way into the carbon composites industry where it is being used to test aircraft parts. Einstein@Home (like it’s big sister, Seti@Home) was one of the first projects to use your home computer to do scientific crowd-computing while your computer was sitting idle during Monday Night Football, turning the world into a vast supercomputer. LIGO’s advanced laser control systems are demonstrating the precise methods needed to shape and control lasers in applications ranging from laser welding, to high precision laser cutting systems, to advanced laser weapon systems.  None of this was intended, but it all sprang from the same fertile ground — the seeds of ideas planted and nurtured from an exquisite mix of ideas stirred together with reckless abandon.  Polymathism in the large.

Standing at the vertex of LIGO, staring down the arm, the joy in our accomplishment is pierced by an unerring certainty that we should be doing more of this.  We need more polymathism in the world, on scales both large and small.  We should unfetter our young scientists, and let their minds stray to the far reaches of wonderfully crazy ideas and fantastic imaginings about what our future could be.  It is hard to imagine that good things can and will result from allowing such freedom, particularly in trying times of economic woe and political discord.  It is even harder for the vanguard of scientific leaders (the “greybeards”, as I call them) to encourage big expansive thinking among our young scientists when the great discoveries could easily overshadow our own seemingly meager contributions to the state of human knowledge; the egos of scientists (despite their outward bravado) are fragile. But that doesn’t change the fact that we need more polymaths, not just to inspire us by charging down the frontiers of discovery, but to address serious problems with new and creative connections and solutions that narrow box thinking will never discover.  The world has serious problems, and we need creative thinking to address those problems.

Standing at the vertex of LIGO, staring down the arm, I wonder what Leonardo would have thought if he was right here with me?  I can imagine him sitting here next to me, with a parchment and a pen in hand, sketching the long lines of LIGO’s arm, the scrub desert of eastern Washington and the distant shadow of Rattlesnake Mountain, and my mind strays into imagination, wondering all the things that could be.

Where Discoveries Happen

by Shane L. Larson

On a cold spring morning in Virginia, the leaden clouds had cleared off leaving the morning skies a clear deep blue that reminded me of being home in the Rockies.  Surrounded by hundreds of bustling Virginians, I emerged from the Ballston Metro station, and walked down the streets of Arlington.  Nestled amongst the glass and brick towers of this modern suburbia is a broad and nondescript building, not unlike many others on nearby blocks.  But this building is different.  On this building, emblazoned in burnished steel letters on the overhang that covers the entrance, are three simple words: National Science Foundation.

It is not one of the hot destinations for visitors to the Washington DC area.  Ten year olds want to visit the Air and Space Museum; a steady stream of people walk reverently past the Constitution and Declaration of Independence at the National Archives; dinosaurs at the Natural History Museum may as well be alive and walking around; and many sit in the National Gallery immersed in their contemplation of the wondrous works of master painters and sculptors.  I suppose even the Woodrow Wilson House must get more visitors than the National Science Foundation.  But I wanted to come here, to stand in front of this building, and bask in the glory.  When I had previously stopped in front of NASA Headquarters to get my picture next to the sign, there were others who had made the same pilgrimage as me.  We helped each other shoot pictures, traded tales of wanting to visit NASA since we were young, and how we always wanted to be astronauts and work on the Hubble Space Telescope.

But today, under the late winter skies of Virginia, few stopped (well, none really) to share the moment with me, and that is a shame. The National Science Foundation (NSF) is responsible for as many wondrous and profound discoveries as our friends at NASA, but their press is lighter and the visibility of the Foundation is much lower, much to my dismay.  For myself as a young scientist, visiting the NSF is like getting to stand on the pitcher’s mound at Dodger Stadium or visiting base camp on Mount Everest.  I suppose to some, however, it is less grandiose: more like visiting the heaviest ball of twine in Lake Nebagamon, Wisconsin, or like visiting the first Wendy’s in Columbus, Ohio.  But the National Science Foundation is a place of wonders –– it embodies, more than any other edifice of our civilization, the defining character of the human species: the desire to know.  The ineffable quality of our psyche, that usually is glibly referred to as “curiosity”, is what the NSF is all about.  The recognition of curiosity as a tool has evolved into a uniquely human endeavour called “science.”

Since its formation in 1950 by an act of Congress, the NSF has become the hub of a large fraction of the research and development efforts of the scientific community in the United States.  The mission statement efficiently captures their mandate from the Congress: “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense.”  As is the case for all of us, we encounter instances in our lives when a few short words cannot always capture the deep meanings that some endeavours hold for us.  Our formal language is inadequate to the burdens of our hearts, and to make up for that, we tell stories.  Let me tell you three stories, vignettes about what the NSF does in the hope of illustrating their mission and the role they play in our society.

The Tale of a Scar.  Some of my close friends have often noticed a one inch scar on the outside orbit of my left eye.  It’s my big movie star scar, though it has not served me as well as Harrison Ford’s chin scar.  In 1982, I was a small and admittedly nerdy young kid. I read books on Einstein, I waited breathlessly for every launch of the space shuttle, and I lived and breathed Star Trek.  I was also bullied.  I received my Indiana Jones scar when an older and much larger student took my prized possession of the day, a collected volume of the novels of H. G. Wells.  When I dared to try and get it back from him, he forcibly threw me across the room into a metal desk chair. The result was 8 stitches, less than a quarter of an inch from my left eye.  It was not the first, nor my last encounter with bullies.  Bullying is a vile and pernicious expression of cowardice that many, unfortunately, view as an unavoidable part of childhood. One of the truths of the modern age is that as our lives become more integrated with technology, old forms of pathological behaviour find new forms of expression, not the least of which is bullying. The advent of social media and the globalization of information in our society has attracted the bullies and expanded the scope of their social terrorism.  Now, your children receive the full brunt of an attack not on the playground, but on their small screens at home while surrounded by family and friends; what was once a fortress of protection has been breached by 3G wireless coverage and cell phones.  Research suggests that in today’s world, 20-40% of all youths are the victims of cyberbullies at least once.  Perhaps more startling, the new ranks of cyberbullies are not confined to our children –– adults have increasingly become victims as well.

As our society evolves, propelled into the future by our ever-changing technology, the NSF is there to understand its impact on our culture.  The psychology, practices, and impact of cyber-bullies on our culture, and the role that the technology plays are well within the purview of the science funded by the Foundation (read the first part of three articles here: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=121847).  As a scientist, I can sit up a little taller, proud that my profession is trying to do something to make the world a better place. But the person really taking notice is the 12 year old kid still trapped inside of me, hopeful that these scientists can prevent some other hopeful young soul from growing up with a very public scar from the dark shadows of their youth.  Sometimes, the mission of the Foundation is to help us protect ourselves.

Time Capsule in the Ice.  Sometimes, the discoveries of the NSF give us an opportunity to think deeply about our existence on this small world.  One of the last great unexplored areas of this planet are the vast, icy reaches of Antarctica.  Protected by international treaty in 1959, the continent cannot be developed for military or commercial resource purposes.  In the United States, our presence in the frozen reaches of Antarctica is managed by the National Science Foundation’s Office of Polar Programs (http://www.nsf.gov/dir/index.jsp?org=OPP).  One small part of the Polar Programs is an ongoing effort called ANSMET — the Antarctic Search for Meteorites (http://geology.cwru.edu/~ansmet/).  ANSMET’s mission is to search the icy surface of Antarctica every austral summer for meteorites.  Meteorites are hunks of rock and metal, fallen to the surface of the Earth from outer space.  Buried in the Antarctic ice after making Earth-fall, meteorites are easy to spot when the Sun warms them each summer, melting the ice around them so they are visible on the surface, a bold dark spot in the vast sea of white.  Since the end of the Apollo era, ANSMET is one of the only ongoing scientific efforts that provides direct samples of extraterrestrial materials.  Scientists are deeply interested in meteorites because they are time vaults, sealed capsules that harbor information about the primordial composition of the early solar system and, sometimes, pockets of the early volatiles from when the planets were born.

In 1984, two scant years after I received my scar, a meteorite team was deposited in the Allen Hills region of Antarctica by the NSF Polar Programs.  The first meteorite the team found that season was given the nondescript name ALH84001.  It is an achondrite, or stony meteorite, similar to basalt found on Earth.  It was returned to the United States, where it was archived with all the other meteorite samples, and analyzed for its age, structure, and composition.  We also determined its probable origin –– Mars.

That might have been the end of the story of ALH84001, but in August of 1996, during a routine micrograph scan of thin slices taken from the meteorite, scientists stumbled on a remarkable and tantalizing discovery –– mineralized structures that look, for all the world, like fossilized bacteria. The micrographs from ALH84001 captured the imagination of the world.  It was the first time the human race had ever had to seriously contemplate the possibility that Earth was not the sovereign haven of life in the Cosmos.  It is one thing to think about extraterrestrial life, to debate it in the backyard on a summer evening with a beer in one hand and a bratwurst in the other.  But to be faced with plausible evidence of the prospects gives one pause.  It reminds us that we are small and the Cosmos is vast, and that there is much we have yet to learn.  This is not a demeaning insight, but an uplifting and inspiring recognition that the Cosmos has created beings such as we, who can ponder the questions of our own existence.  Sometimes, the mission of the Foundation is to help us know ourselves and our place in the Cosmos better.

What Einstein Thought was Impossible.  In 1918, Albert Einstein was working with general relativity, which he had written down several years before.  General relativity was a new way to think about gravity that had resolved some old observational problems in astronomy and had suggested that there were new things for astronomers and physicists to think about.  Einstein was interested in how gravity propagated through the Cosmos –– how did it get from one place to another? What happens when the source of gravity, say a  planet or a star, moves?  In 1918 Einstein was trying to answer this question, and he made a remarkable discovery: gravity propagates in waves, just like light.

Like every good scientist, Einstein did his due diligence and immediately calculated what it would take to detect these waves.  Imagine you lay two rocks on the ground, and measure the distance between them.  Gravitational waves stretch and shrink the distance between points in space (your rocks) as they travel by.  The more separated the rocks, the greater the change caused by the gravitational waves.  So how big of a change did Einstein predict these gravitational waves might cause?  If you have one rock here on Earth, and another rock near the Sun, 150 million kilometers away, the gravitational waves will change the distance by less than the width of an atomic nucleus.  Einstein thought that it would be impossible to measure this effect, and promptly moved on to new projects.

But now, fast-forward a century.  We’ve replaced Einstein’s fountain pen with ball point pens, phonographs with iPods, and linked the world with a global network of computers, fiber cables, and satellites.  Today, immersed in technology undreamed of in Einstein’s day, we can seriously contemplate looking for these gravitational waves.  In one of the most awe-inspiring scientific undertakings ever imagined by humans, the National Science Foundation has been building the Laser Interferometer Gravitational-wave Observatory –– LIGO (http://www.ligo.org/).  The premise of LIGO is to replace your rocks with carefully constructed mirrors and to measure the distance by timing how long it takes laser light to fly back and forth between them.  The observatories that house the mirrors and lasers are enormous, 4 kilometer by 4 kilometer L-shaped installations that make the measurement in two perpendicular directions at once.  When they come online sometime after 2015, we will begin our first serious astrophysical reconnaissance of the Cosmos using gravity as our messenger.  We should be able to detect the collisions of neutron stars, the shrunken dead husks of stars collapsed to the size of a small city; we should be able to listen to the siren song of black holes spiraling together to form new, bigger black holes; and maybe, if Nature lets us, we may hear the faint murmur of gravitational waves from the Big Bang, the whispering signature of the creation of the Cosmos.

The scope of LIGO is awe-inspiring, and more than anything else it reminds us that our species is truly limitless.  It reminds us that our ingenuity and curiosity and perseverance can overcome any challenges, that we can tease any secrets from Nature with enough diligence, and that we can indeed solve any problem that was once thought impossible.  Sometimes, the Foundation reminds us that there is nothing we can’t do.

There are many such tales we could tell like these.  Standing there outside the National Science Foundation on that spring morning, I was thinking that despite everything we know, despite everything we can do, the vast majority of the world is still a complete mystery!  The goal of science is to explore those mysteries and to use the answers to improve our lives.  That is the mission of the National Science Foundation.

———————————————————————————-

The NSF uses the tagline, Where discoveries happen.  You can explore the vast mosaic of discoveries made by NSF funded science, and their applications to our world at the NSF Discovery site:  http://www.nsf.gov/discoveries/

You can also watch a spectacular array of video summaries at http://science360.gov (also available as an app for your iPad –– Einstein would have loved that!).