by Shane L. Larson
In modern astrophysics, the study of black holes grows out of general relativity, the modern description of gravity written down by Einstein in 1915. As descriptions of Nature go, general relativity is among one of the most remarkable discoveries humans have ever made.
On the surface, general relativity seems extraordinarily complex and mathematical, and it can be. The governing equations that describe what general relativity explains and predicts about the Cosmos are what scientists call non-linear. Generally this means the equations cannot be solved with simple pen and paper calculations, using algebra skills you learned early in your mathematical training. This was something Einstein recognized early on. He had in fact abandoned the idea that there would ever be “simple” or “exact” solutions to his equations, and started working on “weak gravity” (“linearized” for the aficionados) cases where the equations of general relativity can be written in ways simple enough to work on.
But, as if often the case in science, even the smartest of us sometimes don’t see the obvious. In 1915, barely a month after the first presentation of general relativity at the Prussian Academy, a young German soldier named Karl Schwarzschild wrote a letter to Einstein, showing that if you use general relativity to consider a situation which has symmetry, the equations become simple enough to solve directly. Schwarzschild considered the case of a source of gravity that was perfectly spherical, like a planet or star or other massive body. Today, we’ve named this solution after him, and the most extreme example of what Nature can do with it is called a Schwarzschild black hole.Most of us have heard quite a few weird and exotic things about black holes, much of which defies our common experience and common sense. That exoticness comes from the sophisticated nature of the non-linear equations of general relativity, but also from the fact that the places where the Cosmos creates or harbors black holes are the most extreme environments imaginable, far outside anything you might encounter on Earth, either on a wilderness hike or in a physics laboratory. But the discomfitting exoticness of black holes belies a subtle truth: they are exceedingly simple objects.

Cars are complicated, which is why you see lots of magazines like the one on the left. Black holes are simple, which is why you don’t see magazines like the one on the right. [Image: S. Larson]
Unlike automobiles, black holes are simple. They are completely characterized by only three numbers: the mass, the spin, and the amount of electric charge they have. Black holes that have one or more of these properties are named for the scientists who first wrote down the mathematical descriptions that describe them in the context of General Relativity.
These three properties are all ones that seem familiar and quite ordinary, because they are used when we talk about most things in astrophysics. Mass, spin, and charge are all quantities that are more or less familiar. However, in the context of black holes what we mean by them is less clear. Consider “mass.” What do we mean by the mass of a black hole? To understand this, we have to first be very clear what we mean by black hole and confront some of its exotic properties.
Our adopted definition for “black hole” is a very practical one — it’s an object whose gravity is so strong, not even light can escape. As scientific definitions go, I like this precisely because it is very practical — it captures an immutable way to identify what an object is based on a simple observation or experiment you can do, in this case you can test the gravity of an object to see if it is, in fact, a black hole or something else.
One of the things you may remember learning about gravity early on in your science classes is that gravity gets stronger as you get closer to an object, and gets weaker as you get farther away from an object. That means if you are far away from a black hole, the gravity you feel from it does not have to be very strong at all! More to the point, if you are far from the black hole and point a laser pointer directly away from the black hole, the laser light goes flying off minding its own business without consequence; the black hole is so far away its gravity has little or no measurable effect. But that it also means is as you get closer and closer to the black hole, the gravity must get stronger until it finally becomes so strong that the laser light cannot get away. That transition point, where gravity is finally strong enough to stop light, is called the “event horizon.” It is NOT a physical surface — it is simply that place where gravity has gotten strong enough to overcome light.

We can represent gravitational influence with a figure that shows lines along which an object feels the gravitational force. The number of lines emanating from an object is related to the mass. The strength of gravity you feel is related to how many lines are around you (how many lines cross into the little red circles). Stick Spock, far away, feels weaker gravity than Stick Picard, who is somewhat closer. Stick Geordi, who is very close to the source of gravity, experiences much stronger gravity. [Image: S. Larson]
The question that set us along this line of reasoning is “What do you mean by mass?” If the black hole has an inside and an outside, then that seems like an impossible question to answer because the mass lives inside the event horizon — how do you know it has mass? That is an eminently reasonable question to ask! It’s an important one to ask because of the way we talk about black holes. In most contexts, mass is a code word that means “the amount of stuff that makes up an object.” For astronomers, a practical way to think about what we mean by mass is it defines “how much gravity a black hole creates.”
To imagine what we mean by that, try to think about how you measure the mass of the Sun. Has anyone ever taken the Sun and plopped it down on a scale at the doctor’s office? No. We’ve measured the mass of the Sun by observing how its gravity has influenced other objects around it. If I look at the orbit of a spaceship or a small asteroid at a known distance from the Sun, the time it takes to complete the orbit tells me how massive the Sun is. We didn’t “measure the mass” of the Sun (how much “stuff it has” in it), we inferred the mass by measuring the gravity of the Sun. When we state the mass of a black hole, we are doing exactly the same thing — we’re using a number (that we call “mass”) to express how much gravitational influence the black hole would have on things that might fly around it in space.

One way to “measure mass” is to look at how long it takes to complete an orbit of a given size. You can do this around the Sun or around a black hole, and they will give the same answer if they “have the same mass.” Compared to the Sun, the gravity of the black hole is only extremely strong when you are close to the hole, seen here in this figure by comparing how close the lines are near each of the objects. [Image: S. Larson]
Wait — what? That’s right, a black hole is completely empty space. It isn’t tangible, there isn’t stuff you can scoop up and collect in a little plastic bag. It is empty space. So what is it? It is pure gravity. Now it seems weird to think about it that way, because you are used to thinking that things in outer space are made of stuff — stars, galaxies, nebulae, comets, asteroids, and planets are all made of stuff. But black holes are not. You’ve encountered that idea before — if we go dig a big hole in your garden then lean on our shovels to admire our work, we point at a big empty space, full of nothing, and we call it a hole. This is kind of the same idea.
Now you rightfully might be inclined to ask what is making the gravity? After all, in the rest of the Universe, to make gravity you have to have stuff. Isn’t that the point in why we have orbits around the Sun? The Sun has stuff it is made of, that stuff makes gravity, and gravity is what makes stuff move in orbits. But gravity isn’t a substance that massive objects make and throw out into the Universe — gravity is an effect they have on the Universe around them. Einstein’s great realization is that what you and I think about as a “force” of gravity is really our response to the shape of the Universe around us (more properly, the shape of “spacetime”), which is forcing us to move in certain ways. A black hole’s “gravity” is just a statement of how the black hole has bent spacetime outside of it. Let’s imagine a simple example.
Imagine I show you the paths some ants are walking along, but I’ve gotten some of my Hollywood special effects friends to remove the objects they are walking on, and all you can see is their path. The only rule is an ant always walks on a straight line, directly where its head is pointing, never turning to its left and never turning towards its right. What do you think the ant paths in the figure above are showing?You might have said a “table” or a “piece of paper” or the “ground” or a “wall.” It could be any of these things! You can’t tell the difference between them from the paths, only that whatever it is is FLAT. Now consider the ant paths shown below.

If the surface has an interesting shape, the paths ants take walking across it, even though they are walking “in straight lines,” look interesting. One path will tell you the surface is interesting (left), but many paths will reveal what the surface really is (right). In this case, a sphere. [Image: S. Larson]
Now consider the more complicated collection of paths below. The more paths you have, the more likely it is you can understand the underlying shape of the space. The ants aren’t feeling any force that makes them change directions they are moving. As far as they are concerned they are walking freely in straight lines, and the shape of the surface they walk on determines what that path looks like. The end result shows you the shape of the space, and sometimes it is flat, sometimes it is spherical, and sometimes it looks like a bottle!

If the surface has some exotic shape, the ant paths can have a wide variety of different behaviours, but with enough paths you can understand the surface they are walking on. [Image: S. Larson]
So what’s the difference between how a star bends spacetime and how a black hole bends spacetime? Only how strongly it does so. The Earth bends spacetime pretty strongly — if you try and jump straight up you can’t get away. A rocket has to travel just over 11 kilometers a second (25,000 miles per hour) to get away. A black hole bends spacetime more strongly, so strongly that you’d have to travel faster than the speed of light, or 300,000 kilometers a second (671 MILLION miles per hour) to get away! Exotic, to say the least!
But despite their exotic nature, black holes had to come from somewhere. Next time we’ll talk about how to make black holes in the Cosmos.
————————–
This post is the second in a series about black holes.
Black Holes 01: Imaging the Shadow of Darkness
Black Holes 02: What are black holes made of? (this post)
Pingback: Black Holes 3: Making black holes from ordinary stuff | Write Science
Pingback: Black Holes 4: Singularities, Tunnels, and Other Spacetime Weirdness | Write Science
Pingback: Black Holes 5: Inklings & Obsessions | Write Science