Gravity 10: Signatures of the Big Bang

by Shane L. Larson

Science has two interlocking pieces that always work together. One part is “describing the world to predict the future and explain the past.” This is the part that many of us remember from science class, involving pen and paper and mathematics and the Laws of Nature. Another part is “observing the world and seeing what Nature is up to.” This is also a part that many of us remember from science class, involving doing experiments and recording numbers and making graphs. These two pieces are called theory and experiment respectively, and they constantly validate and reinforce each other in a never-ending cycle of upgrading and refining our knowledge of the Cosmos.

All science is a combination of theory and experiment. In Cosmology, theory is an application of general relativity embodied in the Friedmann Equations (left); experiment is captured in astronomy (right).

All science is a combination of theory and experiment. In Cosmology, theory is an application of general relativity embodied in the Friedmann Equations (left); experiment is captured in astronomy (right).

Cosmology has seldom had both theory and experiment walking hand in hand. Instead one or the other has been out in front — sometimes way out in front — waiting for the other to catch up. This was certainly the case when general relativity was announced to the world — as a description of the machinery of the Cosmos, it was perfectly capable of making predictions that were so far beyond our ability to observe and verify that we didn’t recognize the truth for what it was. This famously happened early on, in 1917 when Einstein published one of the earliest papers about relativistic cosmology entitled “Cosmological Considerations in the General Theory of Relativity.”

As city dwellers, it is often easy to forget that the sky is full of stars. This fact leads to the most natural assumptions about the Universe based on experience: the Universe is full of stars.

As city dwellers, it is often easy to forget that the sky is full of stars. This fact leads to the most natural assumptions about the Universe based on experience: the Universe is full of stars.

At that time, we were profoundly ignorant about the nature of the Universe. The prevailing view was that the Cosmos was full of stars, and that the Universe was static. It’s the most natural assumption in the world based on your experiences when you step out the door every night — the sky is full of stars and they change little, if at all, night to night.

Einstein considered a Universe simply filled with stars, and asked what general relativity predicted. He found it only predicted one thing: the Universe must collapse.  Preconceptions are a powerful force in science, and Einstein believed strongly in the static Universe, so much so that he supposed maybe he had not gotten general relativity completely correct. So he introduced a mathematical addition to general relativity that pushed back against the collapse, called the Cosmological Constant.

Before 1924, the nature of galaxies was unknown. They were grouped with the "nebulae" -- wispy, cloud like structures that could be seen through the telescope. These included Messier 31, the Andromeda Nebula (L) and Messier 51, the Whirlpool Nebula (R). The Whirlpool was the first nebulae that spiral structure was detected in, by Lord Rosse in 1845.

Before 1924, the nature of galaxies was unknown. They were grouped with the “nebulae” — wispy, cloud like structures that could be seen through the telescope. These included Messier 31, the Andromeda Nebula (L) and Messier 51, the Whirlpool Nebula (R). The Whirlpool was the first nebulae that spiral structure was detected in, by Lord Rosse in 1845.

But science is always on the move. Telescopes in that day and age were getting larger. In 1917 the 100-inch Hooker telescope first saw starlight on its mirror, as it embarked on a long and storied history of astronomical discovery. Telescopes gave us the capability to probe deeper into the Cosmos, and we had started to discover vast diaphanous complexes of light that showed no stellar qualities. These were called nebulae, Latin for “cloud.”  A few of the nebulae, the “spiral nebulae,” perplexed astronomers — some thought they were simply odd nebulae (vast complexes of gas and dust), and others thought they were island Universes (other galaxies, like the Milky Way).

The 100-inch Hooker Telescope on Mount Wilson, used to discover the expansion of the Cosmos.

The 100-inch Hooker Telescope on Mount Wilson, used to discover the expansion of the Cosmos.

The discovery of the distances to the spiral nebulae, using Leavitt’s Cepheid variable method, was a watershed moment in the history of cosmology. It put on the table two  important facts: first, the Universe was vast — enormously vast — with distances far beyond the boundaries of our own galaxy.  Second, the major constituent especially on large scales, was not stars, but galaxies (which are agglomerations of stars). These two simple facts suddenly and irrevocably changed the way we thought about the Universe. In the first years after the discovery of the nature of galaxies, Friedmann and Lemaître used general relativity to imagine a Universe filled with galaxies, and discovered the idea that the Universe was expanding. This notion, discovered on paper, was bourne out in 1929 when Humason and Hubble, once again using the 100-inch telescope on Mount Wilson, found all the galaxies in the Universe were receding from one another.

At that time, Lemaître made a great leap of imagination — it was a thought that was well outside the comfort zone of astronomers of the day, though today we may view his leap as completely obvious. From the mindset of the future, it is difficult to imagine just how hard it was to think different. Lemaître supposed that if the Universe was expanding, then in the past it would have been smaller, and hotter. The idea was met with incredulity and derision, sparking enormous debate for decades to come. But science is the blend of ideas on paper with observations of the Universe. If Lemaître’s ideas were right OR wrong, the evidence could be found by looking into the Cosmos.

There are many lines of evidence that confirm the basic idea of the Big Bang, but there are three major pillars of support. The first, is the expansion itself. The Universe is not like a sports car, starting and stopping on a whim, braking and accelerating at random. Its evolution is driven by the Laws of Nature, in a smooth and predictable fashion. If we see expansion today, that expansion started in the past. The rate and trends in the expansion are a function of the amount of matter in the Universe, and the initial conditions of the expansion. These quantities can be determined from astronomical observations, and are consistent with the Big Bang picture.

A popular T-shirt meme about atoms, a clever science pun!

A popular T-shirt meme about atoms, a clever science pun!

The second and third pillars of evidence for the Big Bang have to do with what happens to the Universe as it expands and cools, and the consequences for matter.  Everything you and I see around us here on Earth — rocks, trees, candy bars, platypuses — is made of atoms. Atoms are a composite structure. The center is a compact heavy core called the nucleus comprised of protons and neutrons. It is surrounded by a cloud of electrons, equal in number to the protons in the nucleus.

The fact that the atom holds together is a manifestation of the forces at work. The electrons are held to the atom by virtue of attractive electrical force between them and the nucleus. If you bang two atoms together hard enough, they break apart into free nuclei and free electrons.

The nuclei, built of protons and neutrons, are held together by a very strong force that acts over short distances called the nuclear force. The nuclear force is tremendously strong, but if you bang to nuclei together hard enough, they too can be broken up into free protons and free neutrons.

In the distant past, shortly after the Big Bang, the Universe was very compact: everything in it was closer together, and extraordinarily hot. As the Universe gets smaller, it’s a bit like being squished together in the mosh pit at a concert — you can’t really move anywhere without crashing into something else. The enormous temperatures mean that everything was moving extremely fast — the hotter the temperatures, the faster the motion, the harder the crashes. If you go far enough back in time, the Universe gets so hot you can’t have atoms. If you go even farther back, it gets hotter and the Universe can’t even have atomic nuclei.

The basic constituents made during Big Bang nucleosynthesis.

The basic constituents made during Big Bang nucleosynthesis. Protons (red) and neutrons (green) bind to form the simplest atomic nuclei.

The second pillar can be understood by going back to a time in the first minute after the Big Bang. Up to this point, the Cosmos was a primordial soup of free electrons, free neutrons, and free protons, all swirling around in a maelstrom of churning energy. The Universe had started its inexorable expansion, and was cooling as a result.  By the time the Cosmos was 10 seconds old, it had cooled from its hot beginnings down to a temperature of about 2 billion degrees Celsius. At this temperature, protons and neutrons begin to stick together to form the first atomic nuclei. This process of formation is called primordial nucleosynthesis — it makes hydrogen, deuterium, helium, and small amounts of lithium and beryllium.

Big Bang theory predicts how much of each of these was synthesized in the first 15-20 minutes, a delicate balance astronomers call the primordial abundances. What astronomers can see agrees with the predictions of Big Bang nucleosynthesis.

But perhaps the most important observational signature of the Big Bang has to do with light. After the formation of the atomic nuclei, the Cosmos was still too hot to form proper atoms. Every time a nucleus tried to bind with an electron, a collision would knock the electron free. So, for the next 400,000 years, the Universe remained a seething fluid of atomic nuclei, free electrons, and energy.

When light is packed in so tightly with charged particles, like the electrons and atomic nuclei, it is not free to travel about of its own free will. It travels only a short distance before it encounters an electron, and it scatters.  Light simply can’t go very far.

(L) Before recombination, light cannot travel very far because it encounters free electrons, which interact with it causing it to scatter. (R) After the electrons bind to nuclei to make atoms, the light decouples from matter, and is free to stream through the Universe unimpeded by scattering interactions.

(L) Before recombination, light cannot travel very far because it encounters free electrons, which interact with it causing it to scatter. (R) After the electrons bind to nuclei to make atoms, the light decouples from matter, and is free to stream through the Universe unimpeded by scattering interactions.

But, after 400,000 years, the Universe cools to a balmy 3000 degrees Celsius, cool enough that each time an electron bumps into a nucleus, it binds together to form an atom. This process is called recombination. From the point of view of the light, all of the charged particles suddenly disappear (atoms are neutral, having no overall electric charge) and the Universe becomes transparent. The light can travel anywhere it wants without being impeded by the matter; astronomers call this decoupling.  The Cosmos is full of freely streaming light.

A recreation of the 1965 Cosmic Microwave Background map, covering the entire sky (Penzias and Wilson could not see the entire sky from Bell Labs). The band of stronger microwave light is the signature of the Milky Way Galaxy.

A map of the Cosmic Microwave Background across the whole sky. First detected by Penzias and Wilson in 1965, this light is the signature of ever cooling Universe after the Big Bang. The band of stronger microwave light along the center of the map is the signature of the Milky Way Galaxy.

For the next 13 billion years, the Universe continued to expand to the present day. All the while the streaming light — the signature from the birth of atoms — surfed right along.  Spacetime is stretching as the Cosmos expands, and the light from that early, hot, dense state had to give up energy to fight against the expansion, shifting to longer and longer wavelengths as time progressed. By the time light reaches the Earth today, it should appear as microwave light.  And indeed, it is. In every direction we look on the sky, we see a uniform background of microwave light called the Cosmic Microwave Background. This is the third, observational pillar, the evidence, that tells us our thinking about the Big Bang is on the right track.

This is the basic picture of the Big Bang that was developed since the late 1920’s — decades of careful comparison of observations with theoretical calculations. The refinements and developments — of both theory and experiment — continue to this day.

—————————————

This post is part of an ongoing series written for the General Relativity Centennial, celebrating 100 years of gravity (1915-2015).  You can find the first post in the series, with links to the successive posts in this series here: http://wp.me/p19G0g-ru.

Advertisements

2 responses to “Gravity 10: Signatures of the Big Bang

  1. Informative, as always!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s